Дан куб ABCDA1B1C1D1 с длиной ребра 1 ед. изм. На ребре A1D1 находится точка M — так, что A1M:MD1=1:3. Определи синус угла ϕ между прямой AM и диагональной плоскостью(BB1D1D).
3) к этому заданию рисунок не нужен решение: раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см средняя линия равна полусумме оснований = 14/2 = 7 см
2) <BOC = <AOD (вертикальные) BC ll AD (основания трапеции) <BCA = <CAD (накрест лежащие) <CBO = <ODA (накрест лежащие)==> ==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5) <KAD = <DAK (накрест лежащие) <DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==> ==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см ВС = ВК + КС = 4 + 6 = 10 см S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)
Это настолько простая задача что я даже не знаю как точно написать доказательство ну пусть будет так: нарисуй любой треугольник и расставь буквы теперь смотри АС и DC принадлежит и тому и другому треугольникам значит нам необходимо доказать что AD меньше чем сумма AB и BD. Cторона AD соединяет вершину А и точку D напрямую а AB и BD соединяют точку А и D ломаной линией. Ну как известно кратчайшее расстояние между точками это прямая поэтому AD всегда будет меньше чем сумма AB и BD (кроме случая когда D совпадает с В тогда периметры этих треугольников просто будут совпадать так как это будет один и тот же треугольник) надеюсь довольно таки строго мне удалось доказать
к этому заданию рисунок не нужен
решение:
раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см
средняя линия равна полусумме оснований = 14/2 = 7 см
2)
<BOC = <AOD (вертикальные)
BC ll AD (основания трапеции)
<BCA = <CAD (накрест лежащие)
<CBO = <ODA (накрест лежащие)==>
==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5)
<KAD = <DAK (накрест лежащие)
<DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==>
==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см
ВС = ВК + КС = 4 + 6 = 10 см
S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)
нарисуй любой треугольник и расставь буквы теперь смотри АС и DC принадлежит и тому и другому треугольникам значит нам необходимо доказать что AD меньше чем сумма AB и BD.
Cторона AD соединяет вершину А и точку D напрямую а AB и BD соединяют точку А и D ломаной линией. Ну как известно кратчайшее расстояние между точками это прямая поэтому AD всегда будет меньше чем сумма AB и BD (кроме случая когда D совпадает с В тогда периметры этих треугольников просто будут совпадать так как это будет один и тот же треугольник) надеюсь довольно таки строго мне удалось доказать