Дан куб АВСDА1B1C1D1. Ребро куба равно 6 см. Найдите:
1). Диагональ основания куба
2). Диагональ куба
3). Синус угла наклона диагонали куба к плоскости основания
4). Площадь боковой грани куба
5). Площадь боковой поверхности куба
6). Площадь полной поверхности куба
7). Расстояние от А 1 до середины диагонали основания BD
8). Площадь боковой поверхности пирамиды A1ABD
9). Площадь полной поверхности пирамиды A1ABD
2. Диагональ основания правильной пирамиды ТАВСD и её высота равны 4 . Найдите площадь боковой поверхности пирамиды.
Дотична пряма до кола в евклідовій геометрії на площині — пряма, що дотикається до кола тільки в одній точці та не містить внутрішніх точок кола. Грубо кажучи, це пряма, яка проходить через пару нескінченно близьких точок на колі. Дотичні прямі до кола застосовуються у багатьох геометричних побудовах і доведеннях. Так як, дотична пряма до кола є перпендикуляром до радіуса кола, проведеного в точку дотику, то зазвичай теореми в яких розглядаються дотичні прямі, часто використовують у формулюванні такі радіуси або ортогональні кола.
1) Площадь трапеции равна полусумме произведения ее оснований на высоту.
В трапеции АВСD найдем высоту ВМ
В треугольнике АВМ :
ВМ - катет и высота
АВ=25см - гипотенуза
АМ=(АD-BC):2 - катет
АМ=(24-10):2=7(см)
BM^2=АВ^2-АМ^2
BM =корень из (25*25-7*7)=24(см)
S=(24+10):2*24=408(см2)
S=408см2 - площадь трапеции
2) Средняя линия трапеции равна полусумме ее оснований
В трапеции АВСD
(ВC+AD)=11*2=22(см)
АD=2+4+7=13(частей)
ВС=4части
13+4=17(частей) - составляют 22см
22:17=1,3(см) - 1 часть
АD=1,3 * 13 = 16,9(см)
ВС=1,3*4=5,2(см)
3) Диагонали ромба пересекаются под прямым углом
АВСD - ромб
О - точка пересечения диагоналей
Рассмотрим треугольник АОВ, он прямоугольный
В треугольнике АОВ:
<АОВ=90град.
180-90=90град. - сумма (<AВО + <BАО)
7+8=15 - частей сумма (<AВО + <ВАО), что составляет 90 градусов
90:15=6(град) - 1 часть
<BAO=6*7=42 град.
<A=42*2=84 град.
<ABO=90-42=48 град.
<B=48*2=96 град.
ответ: углы ромба 84 и 96 градусов.