Дан квадрат abcd. точка e принадлежит cd, причем de: ec=3: 2. через вершину a данного квадрата со стороной 4 см проведена прямая, пересекающая сторону cd в точке e, а продолжение стороны bc в точке m. найти mc.
Отрезки касательных, проведенных из одной точки к окружности равны. 1. Поэтому ВД = ВЕ = 7, а АД=AF=9, тогда АВ = АД+ДВ = 9+7=16
2. Центральный угол ВОС опирается на дугу ВС и равен угловой мере этой дуги. Значит угловая мера дуги ВС = 76°. А вписанный угол ВАС, опирающийся на ту же дугу в два раза меньше угловой величины дуги <BAC = <BOC/2 = 76°/2=36°
3. Вписать в окружность четырехугольник можно в том случае, если сумма противолежащих углов равна 180°
Против угла В лежит угол Д, поэтому <B= 180°-76°=104°
Объяснение:
Отрезки касательных, проведенных из одной точки к окружности равны. 1. Поэтому ВД = ВЕ = 7, а АД=AF=9, тогда АВ = АД+ДВ = 9+7=16
2. Центральный угол ВОС опирается на дугу ВС и равен угловой мере этой дуги. Значит угловая мера дуги ВС = 76°. А вписанный угол ВАС, опирающийся на ту же дугу в два раза меньше угловой величины дуги <BAC = <BOC/2 = 76°/2=36°
3. Вписать в окружность четырехугольник можно в том случае, если сумма противолежащих углов равна 180°
Против угла В лежит угол Д, поэтому <B= 180°-76°=104°
На всякий <C=180°-65°=115°
Треугольник равнобедренный, т.к. ∠В=∠С=80° .
Проведём ВК так , чтобы ∠АВК=60° . Тогда ∠ЕВК=40° , ∠КВС=20° .
ΔВСК: ∠ВКС=180-80-20=80° ⇒ ВС=ВК
ΔВFC: ∠BDC=180-80-50=50 ⇒ BC=BF
ВК=ВС=ВF ⇒ ΔBKF - равнобедренный , ∠КВF=60° ⇒
ΔBKF - равносторонний и все его углы равны 60° , ВК=KF .
∠ВКЕ=180-∠BKC=100° , ∠КВЕ+∠КЕВ=180°-∠ВКЕ=180-100=80 ,
∠ВЕК=180-100-40=40° ⇒ ВК=КЕ
BK=КE=KF
Рассмотрим ΔKFE: КЕ=КF ⇒ ∠KFE=∠KEF ,
∠EKF=∠BKE-∠BKF=100-60=40° , ∠KFE=∠KEF=(180-40):2=70 ,
∠x=∠KEF-∠KEB=70°-40°=30°