Дан квадрат АВСД, АВ = 2 см. Построить гомотетичный ему квадрат с коэффициентом гомотетии, равным 3. За центр гомотетии выбрать точку В. ( можно без описания построения)
ВАС=90 Т.к. угол ВАС делится на 3 равные части, то угол ВДА= углу ДАЕ= углу ЕАС=30. Треугольник ВДА подобен ВАС по двум углам: ДВА=АВС, угол ВДА=ВАС=90 , => угол ВСА= ДАВ=30 =>треугольник АЕС= равнобедренный , АЕ=АС Треугольник ВДА= ЕДА по двум углам и стороне, ДА- общая, угол ВДА=ЕДА, угол ВАД=ЕАД. =>ВД=ДЕ обозначим ДЕ за х, тогда ВД=х, ЕС=2х, ЕА=2х S треугольника ЕДА =(1/2)*ЕД*ДА=(1/2)*х*2х*cos30 (х^2)*(sqrt{3}/2)=2/sqrt{3} х=2/sqrt{3} (1/2)АС=АЕ*cos30=(4/sqrt{3})*(sqrt{3}/2)=2 => AC=4 ВА=ВС*cos60=4x*(1/2)=(8/sqrt{3})*(1/2)=4/sqrt{3} S треугольника АВС =(1/2)*АВ*АС=8/sqrt{3} р (полупериметр)=(6+2sqrt{3})/sqrt{3} r=S/p r=8/(6+2sqrt{3})=4/(3+sqrt{3}) S круга=п*r^2=(16п)/((3+sqrt{3})^2)
Приведите примеры векторных величин, известных вам из курса физики.
Ускорение (а), скорость (V), ускорение свободного падения (g).
Дайте определения вектора. Объясните, какой вектор называется нулевым.
Вектор - это отрезок имеющий направление. Вектор называется нулевым, если его начало совпадает с его концом, (т.е. длина 0)
Что называется длиной ненулевого вектора? Чему равна длина нулевого вектора?
Длина ненулевого вектора не равна 0, и его начало не совпадает с его концом. Длина нулевого вектора равна 0.
Какие вектора называются коллиниарными? Изобразите на рисунке сонаправленные вектора a и b и противоположно направленные вектора c и d.
Вектора коллинеарны, если они параллельны, (или лежат на одной плоскости).
Дайте определения равных векторов.
Вектора равны, если они сонаправлены и их длины равны.
Только так, не забудь на рисунке вектора над буквами подписать
Т.к. угол ВАС делится на 3 равные части, то угол ВДА= углу ДАЕ= углу ЕАС=30.
Треугольник ВДА подобен ВАС по двум углам: ДВА=АВС, угол ВДА=ВАС=90 ,
=> угол ВСА= ДАВ=30
=>треугольник АЕС= равнобедренный , АЕ=АС
Треугольник ВДА= ЕДА по двум углам и стороне, ДА- общая, угол ВДА=ЕДА, угол ВАД=ЕАД.
=>ВД=ДЕ
обозначим ДЕ за х, тогда ВД=х, ЕС=2х, ЕА=2х
S треугольника ЕДА =(1/2)*ЕД*ДА=(1/2)*х*2х*cos30
(х^2)*(sqrt{3}/2)=2/sqrt{3}
х=2/sqrt{3}
(1/2)АС=АЕ*cos30=(4/sqrt{3})*(sqrt{3}/2)=2
=> AC=4
ВА=ВС*cos60=4x*(1/2)=(8/sqrt{3})*(1/2)=4/sqrt{3}
S треугольника АВС =(1/2)*АВ*АС=8/sqrt{3}
р (полупериметр)=(6+2sqrt{3})/sqrt{3}
r=S/p
r=8/(6+2sqrt{3})=4/(3+sqrt{3})
S круга=п*r^2=(16п)/((3+sqrt{3})^2)