Дан параллелелограмм DFRK . Из угла проведена бисектрисса FG. Таким образом, что GK и DG соотносятся как 3:5. Еще известно, что RK=131, 1см, а FR=138,4см. Найдите периметр параллелограмма.
Теорема Фалеса: Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки. Пусть дан отрезок АВ. Из А проведем луч и отложим на нем 7 равных отрезков, конец последнего обозначим С.. Соединим С и В. Через концы остальных отрезков проведем параллельно СВ еще 6 прямых. 7 отрезков, на которые эти прямые разделили АВ. равны между собой. Отделим из них 2, поставим точку М. АМ:МВ=2:5.
ответ:Номер 1
ЕК||АD при секущей FB,т к
<МFB=<АВF=56 градусов,как внутренние накрест лежащие
<С+<М=180 градусов,как односторонние при EK||AD и секущей СМ,тогда
<М=180-72=108 градусов
Номер 2
Углы при основании равнобедренного треугольника равны между собой
<1=56 градусов
<2=<3=(180-56):2=62 градуса
Номер 3
<АВЕ=<DBC=15 градусов,как вертикальные
Треугольник DBC
<D=48 градусов
<B=15 градусов
<С=180-(48+15)=180-63=117 градусов
Треугольник АСF
<F=64 градуса
<DCB+<ACF=180 градусов,как смежные
<АСF=180-117=63 градуса
<А=180-(64+63)=180-127=53 градуса
Объяснение:
Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
Пусть дан отрезок АВ.
Из А проведем луч и отложим на нем 7 равных отрезков, конец последнего обозначим С..
Соединим С и В.
Через концы остальных отрезков проведем параллельно СВ еще 6 прямых.
7 отрезков, на которые эти прямые разделили АВ. равны между собой.
Отделим из них 2, поставим точку М.
АМ:МВ=2:5.