Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
1) апофема равна 3
2) площадь нижнего основания равно 81см²
3) площадь верхнего основания равно 1см²
4) площадь боковой поверхности 60см²
5) площадь полной поверхности 142см²
Объяснение:
MP=A'D'=1см
AM=(AD-MP)/2=(9-1)/2=8/2=4см
Теорема Пифагора
А'М=√(АА'²-АМ²)=√(5²-4²)=3см. апофема
Sбок=4*АМ(А'D'+AD)/2=4*3(1+9)/2=
=12*10/2=60см²
Sосн'=А'В'²=1²=1см²
Sосн=АВ²=9²=81см²
Sпол=Sосн'+Sосн+Sбок=60+81+1=142см²
Хотелось найти апофему через высоту пирамиды.
АС=АВ√2=9√2см
А'С'=А'В'√2=1√2см.
НК=А'С'=√2см.
АН=(АС-НК)/2=√(9√2-√2)/2=4√2
∆АА'Н- прямоугольный треугольник
Теорема Пифагора
А'Н=√(АА'²-АН²)=√(5²-(4√2)²)=√(25-32)
Условие не корректно.
Нет высоты, нет апофемы, нет площади боковой поверхности, нет площади полной поверхности.