Дан параллелепипед АВСDА1В1С1D1. Точка N- середина ребра C_1 B_1. Найдите вектор а ⃗ = 2(C_1 N) ⃗ +(C_1 D_1 ) ⃗ +(〖DD〗_1 ) ⃗ началом и концом которого служат вершины данного параллелепипеда. (квадратик это вектор)
Длина этого прямоугольника по условию задачи 30+10=40 см
Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.
Получился прямоугольник с длиной 40 см и шириной 30 см.
Диагональ можно найти, применив теорему Пифагора.
d²=40²+30²=
Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5.
Длина этого прямоугольника по условию задачи 30+10=40 см
Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.
Получился прямоугольник с длиной 40 см и шириной 30 см.
Диагональ можно найти, применив теорему Пифагора.
d²=40²+30²=
Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5.
Диагональ равна 50 см
Площадь полной поверхности прямого параллелепипеда равна сумме площади боковой поверхности и площади двух его оснований.
В прямом параллелепипеде АВСDD1A1B1C1 тупой угол основания 135°, ⇒острый, как внутренний односторонний с ним, равен 180°-135°=45°
Высота ВН прямоугольного ∆ АВD=AB•sin45°=√18•√2/2=3 см
S(ABCD)=ВН•AD=3•7=21 см²
BD - меньшая диагональ основания и является проекцией меньшей диагонали параллелепипеда.
ВD=√(BH²+HD*)=√(3•+(7-3)*)=5 см
Т.к. параллелепипед прямой, его высота равна боковому ребру.
ВВ1=ВD•tg60°=5√3 см
S(бок)=5√3•(2•7+2•√18)=5√3•(14+6√2)=70√3+30√6 или ≈194,728 см²
S(полн)=194,728+42=236,728 см²