Смотри, рисуешь прямоугольную трапецию, в ней прорисовываешь высоту(СО) . Нам известно, что меньшее основание =6, а большее =22. (Меньшее основание обозначим ВС, а большее AD.) Если ты нарисуешь высоту, то у тебя получится прямоугольник и треугольник. Сначала рассмотрим прямоугольник: У этой фигуры стороны попарно равны, значит вс=ad=6 см. Но известно, что AD=22, значит ОD=16. ДАЛЕЕ по теорему Пифагора рассчитаем сторону треугольника СЕ. Так как СЕ - гипотенуза то она равна 12 ( 16*16+20*20=корень из 144=12. Теперь нам известна высота, и мы можем найти площадь трапеции. Площадь трапеции= сумма оснований разделить на два и умножить на высоту= (6+22/2)*12=168 см в квадрате.
решение пусть в выпуклом четырехугольнике abcd ав + cd =вс +ad. (1) точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
Но известно, что AD=22, значит ОD=16.
ДАЛЕЕ по теорему Пифагора рассчитаем сторону треугольника СЕ. Так как СЕ - гипотенуза то она равна 12 ( 16*16+20*20=корень из 144=12.
Теперь нам известна высота, и мы можем найти площадь трапеции.
Площадь трапеции= сумма оснований разделить на два и умножить на высоту= (6+22/2)*12=168 см в квадрате.
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.