Дан параллелограмм ABCD. Окружности, вписанные в треугольники ABD и BDC, касаются диагонали BD в точках M и N соответственно. Окружности, вписанные в треугольники ABC и ADC, касаются диагонали AC в точках K и L соответственно.
а) Докажите, что MKNL — прямоугольник.
б) Найдите площадь этого прямоугольника, если известно, что
BC − AB = 4, а угол между диагоналями параллелограмма ABCD
равен 30◦
.
Медиана АN делит треугольник АВС на два равновеликих треугольника, то есть площадь треугольника АВN равна половине площади АВС. Действительно Основания треугольников АВN и АСN равны (ВN = СN), высота общая.
Опустим перпендикуляр АР на сторону ВС и перпендикуляр МR на сторону ВС.
Треугольники АРN и МRN подобны. АN:MN = AP:NR.
Точка персечения медиан М делит медианы на отрезки с сотношением длинн 2:1, считая от вершины,
то есть АМ: MN. Отсюда АN:MN = 3:1, значит AP:NR = 3:1. AP и NR - высоты треугольников АВN и МВN с общим основанием ВN,
поэтому площадь МВN = (1/3)*(площадь АВN) = (1/3)*(1/2)*(площадь АВС) = (1/6)*(площадь АВС).
Отсюда площадь АВС = 6*(площадь МВN) = 6*15 = 90.
Объяснение:
AOD - прямоугольный треугольник.
ОР - высота из прямого угла в треугольнике AOD.
ОР=√(АР*РD)=√(6√3*2√3)=6см.
По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см.
R=AJ=JO=JP = АО/2 = 6см.
Площадь круга Sк=π*R²=36π.
В прямоугольном треугольнике АРО катет ОР равен половине
гипотенузы АО, значит <PAO=30°,
<РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°.
<PJK=120°(центральный угол, опирающийся на дугу РОК).
РН=0,5*АР=3√3см (катет против угла 30°).
AH=√(АР²-РH²)=√(108-27)=9см.
Площадь треугольника АКР равна
Sapk=AH*PH=9*3√3=27√3см².
Площадь сегмента КОР равна
Skop=(R²/2)*(π*α/180 -Sinα) - формула.
В нашем случае α=<PKJ =120°.
Skop=(36/2)*(π*120/180 -√3/2)
Skop=(12π-9√3)см².
Искомая площадь равна
S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².