Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15°∘ ----- Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2. Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659 sin 15º=≈0,2588 S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади) ----------- Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах Этот вариант решения дан в приложении.
-----
Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2.
Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию
Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659
sin 15º=≈0,2588
S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади)
-----------
Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах
Этот вариант решения дан в приложении.
1) Дано: ΔАВС, D - середина АВ, Е - середина ВС, AD = CE.
Доказать: ΔBDC = ΔBEA.
Доказательство:
AD = DB, так как D - середина АВ,
СЕ = ЕВ, так как Е - середина ВС,
AD = CE по условию, значит
AD = DB = СЕ = ЕВ, а следовательно
АВ = ВС.
В треугольниках BDC и BEA:
ВС = АВ,
DB = EB,
∠B - общий, ⇒
ΔBDC = ΔBEA по двум сторонам и углу между ними.
2) Дано: ΔKLM - равносторонний, А - внутренняя точка ΔKLM,
AK = AL = AM.
Доказать: ΔKLA = ΔMLA.
Доказательство:
АК = АМ по условию,
LK = LM как стороны равностороннего треугольника,
AL - общая сторона для треугольников KLA и MLA, ⇒
ΔKLA = ΔMLA по трем сторонам.