: Дан параллелограмм ABCD, в котором из середины его стороны BC точки H проведены два отрезка к вершинам противоположной стороны. Докажи, что все углы этого параллелограмма равны между собой, если указанные отрезки равны. Моя учительница может придраться ко всему, так что лучше доказывать более менее понятна...
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Пусть b - верхнее(малое) основание a - нижнее(большое) основание. условию a=4b. h - высота (сторона, образующая прямые углы с основаниями) d - малая диагональ l - большая диагональ. По условию l=2d или d =l/2 Правый нижний угол будет D. Надо найти tg D
Решение d - гипотенуза прямоугольного треугольника с катетами b и h. Значит, по теореме Пифагора d^2=h^2+b^2 или l^2/4=h^2+b^2 или l^2= 4h^2+4b^2 (1)
l - гипотенуза прямоугольного треугольника с катетами a и h. Значит, по теореме Пифагора l^2=h^2+a^2 или l^2=h^2+(4b)^2=h^2+16b^2 (2) Левые части у (1) и (2) равны, значит, равны и правые, т.е. 4h^2+4b^2 = h^2+16b^2 Выразим h через b 3h^2=12b^2 h^2=4 b^2 h=2b
tg D = h/(a-b)=h/(4b-b)=h/3b tg D = 2b/3b=2/3 - это ответ
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
b - верхнее(малое) основание
a - нижнее(большое) основание. условию a=4b.
h - высота (сторона, образующая прямые углы с основаниями)
d - малая диагональ
l - большая диагональ. По условию l=2d или d =l/2
Правый нижний угол будет D. Надо найти tg D
Решение
d - гипотенуза прямоугольного треугольника с катетами b и h. Значит, по теореме Пифагора
d^2=h^2+b^2 или
l^2/4=h^2+b^2 или
l^2= 4h^2+4b^2 (1)
l - гипотенуза прямоугольного треугольника с катетами a и h. Значит, по теореме Пифагора
l^2=h^2+a^2 или
l^2=h^2+(4b)^2=h^2+16b^2 (2)
Левые части у (1) и (2) равны, значит, равны и правые, т.е.
4h^2+4b^2 = h^2+16b^2
Выразим h через b
3h^2=12b^2
h^2=4 b^2
h=2b
tg D = h/(a-b)=h/(4b-b)=h/3b
tg D = 2b/3b=2/3 - это ответ