В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
a) Параллельные отсекают от угла подобные треугольники.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)
EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)
S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)
б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.
S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21
S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28
S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2
S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =
(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)
По т.Пифагора АВ²=АС²+ВС²
АВ²-АС²=ВС²
Примем АС=а. Тогда гипотенуза АВ=а√2.
2а²-а²=36⇒
а=√36=6
a√2=6√2
АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой.
В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла).
СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.