Дан периметр параллелограмма ABCD равный 18 см, высота, проведённая к большей стороне, ВН=1 см и его стороны относятся как 3:6. Найдите площадь параллелограмма.
Дан параллелограмм. Параллелограмм - четырёхугольник, у которого противоположные стороны попарно параллельны. Рассмотрим стороны ВС и АD и секущую АК, которая, в свою очередь, является биссектрисой угла А.
Итак, прямые параллельны, значит накрест лежащие углы ВКА и КАD равны (по св-ву).
AK-биссектриса угла А => уг. ВАК = уг. САD=> BAK = BKA => треугольник АВК равнобедренный (по признаку).
1) Это перпендикуляр, т.к. проведён под прямым углом из точки B к прямой а(на ней прямой угол)
2) AB - наклонная, т.к. проведена под углом, не равным 90*, проведена из точки B, т.к. она является началом наклонной, при условии, что проведена к прямой а
3) Расстояние от точки до прямой будет длиной перпендикуляра, если он проведён из точки к прямой, ибо в других случаях это условие уже нарушается
4) Т.к. перпендикуляр является самым коротким расстоянием от точки до прямой, до все остальные наклонные будут длиннее перпендикуляра
5) Они равноудалены от другой прямой, т.к. проведя перпендикуляр из одной точки к другой точке второй прямой, оно будет всегда одним и тем же
Дан параллелограмм. Параллелограмм - четырёхугольник, у которого противоположные стороны попарно параллельны. Рассмотрим стороны ВС и АD и секущую АК, которая, в свою очередь, является биссектрисой угла А.
Итак, прямые параллельны, значит накрест лежащие углы ВКА и КАD равны (по св-ву).
AK-биссектриса угла А => уг. ВАК = уг. САD=> BAK = BKA => треугольник АВК равнобедренный (по признаку).
ВК=АВ=7см.
АВ=CD (по свойству параллелограмма)
ВС=ВК+КС=11см
ВС=АD=11см (по свойству параллелограмма)
Равсd=7+7+11+11=36см
ответ: 1 - 2; 2 - 1; 3 - 2; 4 - 4; 5 - 4
Док-ва:
1) Это перпендикуляр, т.к. проведён под прямым углом из точки B к прямой а(на ней прямой угол)
2) AB - наклонная, т.к. проведена под углом, не равным 90*, проведена из точки B, т.к. она является началом наклонной, при условии, что проведена к прямой а
3) Расстояние от точки до прямой будет длиной перпендикуляра, если он проведён из точки к прямой, ибо в других случаях это условие уже нарушается
4) Т.к. перпендикуляр является самым коротким расстоянием от точки до прямой, до все остальные наклонные будут длиннее перпендикуляра
5) Они равноудалены от другой прямой, т.к. проведя перпендикуляр из одной точки к другой точке второй прямой, оно будет всегда одним и тем же