Дан правильный многоугольник и длина радиуса R окружности, описанной около многоугольника. Определи площадь многоугольника, если:
- у многоугольника 8 сторон и R= 6 см
(если корня в ответе нет, под знаком корня пиши 1).
S=
⋅
−−−−−−√ см2;
- у многоугольника 10 сторон и R= 6 см
(ответ округли до целых).
S=
см2.
Значит, что этот внутренний угол - это угол вершины равнобедренного треугольника, так как он не может быть углом при основании (тогда бы их было два угла по 100, а это невозможно). Из этого следует, что два других угла равны (так как они при основании равнобедренного треугольника). Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним, сумма этих углов будет равна 80. (еще можно посчитать как сумма всех углов треугольника минус известный угол 180-100=80), а так как они равны, то делим на 2, значит 80/2=40.
ответ: углы в треугольнике 40, 40 и 100
а) центром окружности, вписанной в треугольник является точка пересечения биссектрис (достаточно провести две) б) центром окружности, описанной около треугольника является точка пересечения серединных перпендикуляров к его сторонам (достаточно провести два) в) вневписанных окружностей у треугольника три - у каждой стороны своя окружность,центр каждой лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах (достаточно провести два) не забудь дочертить ещё две к другим сторонам