Дан правильный многоугольник и длина радиуса R окружности, описанной около многоугольника. Определи площадь многоугольника, если: - у многоугольника 12 сторон и R= 12 см
(если корня в ответе нет, под знаком корня пиши 1).
S=
⋅
−−−−−√ см2;
- у многоугольника 20 сторон и R= 12 см
(при использовании синусов, косинусов или тангенсов их значения округли до тысячных, ответ округли до целых).
S=
см2.
Это значит, что прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы). Сумма двух острых углов прямоугольного треугольника равна прямому углу. Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника. Другая особенность прямоугольного треугольника состоит в
Тогда Cos(AC1H)=(√5/2)/√2 = √10/4.
ответ:В косинус угла между прямой АС1 и плоскостью ВСС1 равен √10/4.