Дан правильный шестиугольник ABCDEF. Пусть вектор AC= вектору a, вектор AE= вектору b. Разложите по базису (a;b) следующие векторы: AD,CD,AB,BC,DE,AE,FC,EF,DB,BE.
1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
Докажем равенство тр-ков МСД и КДА. Эти тр-ки прямоугольные, т.к. углы С и Д являются углами квадрата. МК = КД по условию, СД = АД как стороны квадрата. Значит тр-ри МСД = КДА по двум катетам. Значит угол СМД = ДКА, МДС = КАД. У прямоугольного тр-ка сумма двух острых углов равна 90 градусов. Из равенства указанных выше углов следует, что в тр-ке КОД угол ОКД + ОДК = 90 градусов, следовательно угол КОД = 90 градусов. Угол МОА = ДОК как вертикальные. Значит тр-ник МОА - прямоугольный. В прямоугольном тр-ке напротив угла 30 градусов лежит катет вдвое меньше гипотенузы. Поскольку гипотенуза АМ = 2ОМ, то угол МАО = 30 градусов, тогда угол АМО = 90 - 30 = 60 градусов. ответ: 60
2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC.
3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD.
4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов.
5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180.
180-90-60=2х
30=2х
х=15 градусов = угол ACD = ADC.
6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что:
45=15+CDB
CDB = 30 градусов
Эти тр-ки прямоугольные, т.к. углы С и Д являются углами квадрата.
МК = КД по условию, СД = АД как стороны квадрата. Значит тр-ри МСД = КДА по двум катетам. Значит угол СМД = ДКА, МДС = КАД.
У прямоугольного тр-ка сумма двух острых углов равна 90 градусов. Из равенства указанных выше углов следует, что в тр-ке КОД угол
ОКД + ОДК = 90 градусов, следовательно угол КОД = 90 градусов.
Угол МОА = ДОК как вертикальные. Значит тр-ник МОА - прямоугольный. В прямоугольном тр-ке напротив угла 30 градусов лежит катет вдвое меньше гипотенузы. Поскольку гипотенуза АМ = 2ОМ, то угол МАО = 30 градусов, тогда угол АМО = 90 - 30 = 60 градусов.
ответ: 60