Дан правильный шестиугольник ABCDEF. Пусть вектор АС=а, вектор АЕ=b. Разложите по базису (a;b) следующие векторы: а) вектор AD б) вектор CD в) вектор AB г) вектор BC д) вектор DE е) вектор AE ж) вектор FC з) вектор EF и) вектор DB к) вектор BE
Точка вне плоскости А. Отрезки от неё АВ = 10 и АС =17. Перпендикуляр из точки А на плоскость обозначим как AD. Проекции отрезков, которые надо найти BD и CD По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения АВ и АС подставить. 100 = BD^2 + 289 - CD^2. Или CD^2 - BD^2 =189. Слева разность квадратов. Причём известна разность проекций. Можем получить СD+BD = 21. Сумму знаем, разность знаем. Решая систему получим CD = 15, BD =6
1) Точка вне плоскости А. Проекции от отрезков ВD = 12 и СD =40. Перпендикуляр из точки А на плоскость обозначим как AD. Сами отрезки, которые надо найти АB и АC По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения ВD и СD подставить. AB^2 =144 + AС^2 - 1600. Всё решается точно так же, как в предыдущей задаче. AB^2 - AС^2 = 1456 -> AB + AС = 56 -> АВ =41; АС = 15 2) Точка вне плоскости А. Проекции от отрезков ВD = 1 и СD =7. Перпендикуляр из точки А на плоскость обозначим как AD. Сами отрезки, которые надо найти АB и АC относятся. как 1 : 2 По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения ВD и СD подставить. AB^2 =1 + AС^2 - 49 И ещё знаем, что 2АВ = АС, то есть 3 АВ^2 = 48 -> AB = 4, АС = 8
Угол А равен углу С, а отрезок АД равен ВС по свойствам параллелограмма. АЕ равен FC по условию. Следовательно, эти треугольники равны по двум сторонам и углу между ними. Значит ЕД = BF.
АВ = ДС как противолежащие стороны параллелограмма. Если вычесть от этих отрезков равные отрезки, то получившиеся чуда природы (ЕВ и ДF) тоже равны. Следовательно, в четырехугольнике BEDF стороны попарно равны и по первому признаку параллелограмма BEDF - параллелограмм.
По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2. От AD можно избавиться. И значения АВ и АС подставить. 100 = BD^2 + 289 - CD^2. Или CD^2 - BD^2 =189. Слева разность квадратов. Причём известна разность проекций. Можем получить СD+BD = 21. Сумму знаем, разность знаем. Решая систему получим CD = 15, BD =6
1) Точка вне плоскости А. Проекции от отрезков ВD = 12 и СD =40. Перпендикуляр из точки А на плоскость обозначим как AD. Сами отрезки, которые надо найти АB и АC
По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2.
От AD можно избавиться. И значения ВD и СD подставить. AB^2 =144 + AС^2 - 1600. Всё решается точно так же, как в предыдущей задаче. AB^2 - AС^2 = 1456 -> AB + AС = 56 -> АВ =41; АС = 15
2) Точка вне плоскости А. Проекции от отрезков ВD = 1 и СD =7. Перпендикуляр из точки А на плоскость обозначим как AD. Сами отрезки, которые надо найти АB и АC относятся. как 1 : 2
По теореме Пифагора AB^2 = BD^2 + AD^2 и AС^2 = СD^2 + AD^2.
От AD можно избавиться. И значения ВD и СD подставить. AB^2 =1 + AС^2 - 49
И ещё знаем, что 2АВ = АС, то есть 3 АВ^2 = 48 -> AB = 4, АС = 8
ответ: Да, является
Объяснение: Рассмотрим треугольники АЕД и BFC.
Угол А равен углу С, а отрезок АД равен ВС по свойствам параллелограмма. АЕ равен FC по условию. Следовательно, эти треугольники равны по двум сторонам и углу между ними. Значит ЕД = BF.
АВ = ДС как противолежащие стороны параллелограмма. Если вычесть от этих отрезков равные отрезки, то получившиеся чуда природы (ЕВ и ДF) тоже равны. Следовательно, в четырехугольнике BEDF стороны попарно равны и по первому признаку параллелограмма BEDF - параллелограмм.