возьмём треугольник авс (ав=вс). Так как треугольник равнобедренный по условию, тогда углы при основании будут равны (180-120)/2=30 градусов.
Дальше по теореме синусов ас/sinb=bs/sina. то есть:
х/sin120=12/sin30
Тогда х=(12*sin120)/sin 30=(12*(корень из 3)/2)*2/1=12 корень из 3.
Проведём высоту вн. Так как треугольник равнобедренный, высота будет медианой и ан=нс=12 корень из 3/2=6 корень из 3.
Рассмотрим прямоугольный треугольник авн, образованный высотой вн и стороной ав, где ав=12 см по условию, а ан=6 корень из 3. По теореме Пифагора найдём длину катета вн.
Объяснение:№167 а) ∠8=∠3 (как вертикальные), ∠6-=8, значит ∠6=∠3, а это углы соответственные при прямых а и с и секущей b, значит а║с б)∠5=101°, значит ∠2=101°° (вертикальные),, получается, что∠2=∠7=101°, а это углы соответственные при прямых а и с и секущей b, значит а║с в)∠5+∠8=180° ∠5=∠2 и ∠8=∠3 (как вертикальные), значит∠2+∠3=180°, но это углы односторонние при прямых а и с и секущей b, значит по признаку параллельности прямых а║с г) ∠1+∠7=180° ∠7=∠4 (как вертикальные), значит ∠1+∠4=180° но это углы односторонние при прямых а и с и секущей b, значит по признаку параллельности прямых а║с 2)№198 При пересечении двух параллельных прямых секущей образуется 8 углов. Воспользуемся рис к задаче 1, представив, что а║с. По условию∠1=35°, , значит∠6=35° (вертикальные), ∠1 и ∠2 смежные, значит ∠2=180°-35°=145°, ∠5=135°(вертикальные), ∠3=∠1=35° как накрест лежащие по признаку параллельности прямых, ∠8=∠3 =35°(вертик), ∠8 и ∠7 -смежные, поэтому ∠7=180°-35°=145°, ∠4=∠7=135°(вертик)
№216 По условию АВ║СД, согласно признаку параллельности прямых ∠4= ∠2 =50° как накрест лежащие при параллельных АВ и СД и секущей АС ; аналогично∠5=∠1=70° как накрест лежащие при параллельных АВ и СД и секущей ВС; по сумме улов треугольника ∠3= 180°- (∠4+∠5)=60°
№201 рисунок к задаче не виден , что можно увидеть , выполнено а)∠1=60°, значит ∠6=∠1=60° (как вертикальные) , ∠2 и ∠1 смежные, их сумма равна 180°, значит ∠2= 180°-∠1= 120°, ∠5=∠2=120° (как вертикальные
возьмём треугольник авс (ав=вс). Так как треугольник равнобедренный по условию, тогда углы при основании будут равны (180-120)/2=30 градусов.
Дальше по теореме синусов ас/sinb=bs/sina. то есть:
х/sin120=12/sin30
Тогда х=(12*sin120)/sin 30=(12*(корень из 3)/2)*2/1=12 корень из 3.
Проведём высоту вн. Так как треугольник равнобедренный, высота будет медианой и ан=нс=12 корень из 3/2=6 корень из 3.
Рассмотрим прямоугольный треугольник авн, образованный высотой вн и стороной ав, где ав=12 см по условию, а ан=6 корень из 3. По теореме Пифагора найдём длину катета вн.
аb^2=ah^2+bh^2
bh^2=ab^2-ah^2
bh^2=144-108
bh^2=36
bh=6 см
ответ: 6 см.
Объяснение:№167 а) ∠8=∠3 (как вертикальные), ∠6-=8, значит ∠6=∠3, а это углы соответственные при прямых а и с и секущей b, значит а║с б)∠5=101°, значит ∠2=101°° (вертикальные),, получается, что∠2=∠7=101°, а это углы соответственные при прямых а и с и секущей b, значит а║с в)∠5+∠8=180° ∠5=∠2 и ∠8=∠3 (как вертикальные), значит∠2+∠3=180°, но это углы односторонние при прямых а и с и секущей b, значит по признаку параллельности прямых а║с г) ∠1+∠7=180° ∠7=∠4 (как вертикальные), значит ∠1+∠4=180° но это углы односторонние при прямых а и с и секущей b, значит по признаку параллельности прямых а║с 2)№198 При пересечении двух параллельных прямых секущей образуется 8 углов. Воспользуемся рис к задаче 1, представив, что а║с. По условию∠1=35°, , значит∠6=35° (вертикальные), ∠1 и ∠2 смежные, значит ∠2=180°-35°=145°, ∠5=135°(вертикальные), ∠3=∠1=35° как накрест лежащие по признаку параллельности прямых, ∠8=∠3 =35°(вертик), ∠8 и ∠7 -смежные, поэтому ∠7=180°-35°=145°, ∠4=∠7=135°(вертик)
№216 По условию АВ║СД, согласно признаку параллельности прямых ∠4= ∠2 =50° как накрест лежащие при параллельных АВ и СД и секущей АС ; аналогично∠5=∠1=70° как накрест лежащие при параллельных АВ и СД и секущей ВС; по сумме улов треугольника ∠3= 180°- (∠4+∠5)=60°
№201 рисунок к задаче не виден , что можно увидеть , выполнено а)∠1=60°, значит ∠6=∠1=60° (как вертикальные) , ∠2 и ∠1 смежные, их сумма равна 180°, значит ∠2= 180°-∠1= 120°, ∠5=∠2=120° (как вертикальные