следующий раз задавай задачи по 1-2, а то долгл всех ждать
1) ha= ( 1/2 * sqrt p (p−a) (p−b) (p−c) ) / a ha=20cm
r= (sqrt(p−a)(p−b)(p−c)) / p r=2cm
R= abc / ( 4 sqrt (p(p−a)(p−b)(p−c) ) R= 18 1/4 cm
2) r= h / 2 h= 2r h=4cm
рассмотрим АВН-прямоугольный египетский ( ВН -высота) , т.е соотношение сторон 3: 4: 5 АН=3см
В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны. т.е.: AB+DC= AD+BC = 10см
пусть ВС=х см х +(3+х+3 )= 10см х=2см
BC = 2см AD =8см 3) АВСД= ромб d1=14cm a =25cm, находим d2 = 24*2=48cm r= sqrt ( (d1/2)^2 +( d2/2)^2) r=12cm 4)ABC -прямоугольный С=90* АС=12х ВС=5х по тПифагора АВ=13х R-r = 18cm r=sqrt ( ((p−a)(p−b)(p−c) / p ) r=2x R= 1 / 2 sqrt (a^2+ b^2) R=6.5x R-r=4.5x=18 x= 4 => R=6.5 * 4=26cm r=2 * 4=8cm 5) S=1/2a*b c=8cm, r=3см проведем OT,ОМ и ОК -радиусы к точкам касания, ОМ_|_CB OT_|_AB OK_|_AC => CM=CK=r=3cm по свойству касательных из одной точки к окр АК=АТ ВТ=ВМ , пусть АТ=х тогда ТВ=8-х дальше легко, давай сам
ответ:
объяснение:
1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
угол а=углу с, т.к. авсд - параллелограмм.
угол авк=60 гр., а
угол в = 60+90=150 гр. угол в= углу д
2.
авсд-трапеция
ад-?
из вершины с проводим перпендикуляр се
решение
ав=вс=10(за условием)
ав=се=10(по свойству)
∠е=90° ⇒ ∠д=∠с=45°⇒δсед-прямоугольный(∠е=90°)
се=ед=10 ⇒ δсед-равнобедренный
ад=ае+ед(при условии)
ад=10+10=20 см
ад=20 см
3.
дано: ромб abcd
угол а = 31°
решение:
в ромбе диагонали являются биссектрисами =>
=> 31/2=15.5 - угол оаd
диагонали пересекаются под прямым углом =>
=> угол аоd = 90°
сумма углов треугольника равна 180° =>
=> 180-90-15.5=74.5° - угол аdo
отв: 74.5°, 90°, 15.5°
4
на фото
следующий раз задавай задачи по 1-2, а то долгл всех ждать
1) ha= ( 1/2 * sqrt p (p−a) (p−b) (p−c) ) / a ha=20cm
r= (sqrt(p−a)(p−b)(p−c)) / p r=2cm
R= abc / ( 4 sqrt (p(p−a)(p−b)(p−c) ) R= 18 1/4 cm
2) r= h / 2 h= 2r h=4cm
рассмотрим АВН-прямоугольный египетский ( ВН -высота) , т.е соотношение сторон 3: 4: 5 АН=3см
В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны. т.е.: AB+DC= AD+BC = 10см
пусть ВС=х см х +(3+х+3 )= 10см х=2см
BC = 2см AD =8см 3) АВСД= ромб d1=14cm a =25cm, находим d2 = 24*2=48cm r= sqrt ( (d1/2)^2 +( d2/2)^2) r=12cm 4)ABC -прямоугольный С=90* АС=12х ВС=5х по тПифагора АВ=13х R-r = 18cm r=sqrt ( ((p−a)(p−b)(p−c) / p ) r=2x R= 1 / 2 sqrt (a^2+ b^2) R=6.5x R-r=4.5x=18 x= 4 => R=6.5 * 4=26cm r=2 * 4=8cm 5) S=1/2a*b c=8cm, r=3см проведем OT,ОМ и ОК -радиусы к точкам касания, ОМ_|_CB OT_|_AB OK_|_AC => CM=CK=r=3cm по свойству касательных из одной точки к окр АК=АТ ВТ=ВМ , пусть АТ=х тогда ТВ=8-х дальше легко, давай сам
ответ:
объяснение:
1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
угол а=углу с, т.к. авсд - параллелограмм.
угол авк=60 гр., а
угол в = 60+90=150 гр. угол в= углу д
2.
авсд-трапеция
ад-?
из вершины с проводим перпендикуляр се
решение
ав=вс=10(за условием)
ав=се=10(по свойству)
∠е=90° ⇒ ∠д=∠с=45°⇒δсед-прямоугольный(∠е=90°)
се=ед=10 ⇒ δсед-равнобедренный
ад=ае+ед(при условии)
ад=10+10=20 см
ад=20 см
3.
дано: ромб abcd
угол а = 31°
решение:
в ромбе диагонали являются биссектрисами =>
=> 31/2=15.5 - угол оаd
диагонали пересекаются под прямым углом =>
=> угол аоd = 90°
сумма углов треугольника равна 180° =>
=> 180-90-15.5=74.5° - угол аdo
отв: 74.5°, 90°, 15.5°
4
на фото