Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
)длина вектора |ab| = √(12+32) = √10 б) разложение по векторам: ab = i+3j 2) а) уравнение окружности: (x-xa)2 + (y-ya)2 = |ab|2 (x+1)2 + y2 = 10 б) точка d принадлежит окружности, если |ad| = |ab| |ad| = √(())2 + (2-0)2) = √40 √40 ≠ √10 - точка d не принадлежит окружности 3) уравнение прямой имеет вид y = kx+b k = yab/xab = 3/1 = 3 0 = 3·(-1) + b b = 3 уравнение прямой: y = 3x+3 4) а) координаты вектора cd: cd = (5-6; 2-1) = (-1; 1) xab/xcd = 1/-1 = -1, yab/ycd = 3/1 = 3 -1 ≠ 3 - следовательно, векторы ab и cd не коллинеарные, и четырёхугольник abcd не прямоугольник.подозреваю, что координаты точки d должны быть (5; -2) тогда точка d также не принадлежит окружности , но:а) координаты вектора cd: cd = (5-6; -2-1) = (-1; -3) xab/xcd = 1/-1 = -1, yab/ycd = 3/-3 = -1 -1 = -1 - векторы ab и cd коллинеарны б) координаты вектора ad: ad = (); -2-0) = (6; -2) координаты вектора bc: bc = (6-0; 1-3) = (6; -2) xbc/xad = 6/6 = 1, ybc/yad = -2/-2 = 1 1 = 1 - векторы bc и ad коллинеарны. векторы лежат на попарно параллельных прямых, значит, четырёхугольник abcd - параллелограмм. cos (ab^bc) = (1·6+3·(-2))/(√(12+32)·√(62+(-2)2)) = 0 ab^bc = 90° если в параллелограмме один угол прямой, то остальные углы тоже прямые, и этот параллелограмм - прямоугольник.
AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см