Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
1) Верно, окружность - геометрическая фигура однозначно; 2) Неверно, касательной называется прямая, которая имеет с окружностью только одну общую точку, если точек две - имеем дело с хордой; 3) Верно, центр вписанной окружности равноудалён от сторон треугольника - все точки равноудалённые от сторон угла принадлежат биссектрисе угла, место пересечения биссектрис равноудалено от всех сторон треугольника - значит центр вписанной окружности; 4) Верно, здесь небольшая логическая ловушка: описанная окружность обязательно проходит через все три вершины треугольника, утверждение "хотя бы две" является включением в первое высказывание - тоже истинно. ответ: 134.
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².
2) Неверно, касательной называется прямая, которая имеет с окружностью только одну общую точку, если точек две - имеем дело с хордой;
3) Верно, центр вписанной окружности равноудалён от сторон треугольника - все точки равноудалённые от сторон угла принадлежат биссектрисе угла, место пересечения биссектрис равноудалено от всех сторон треугольника - значит центр вписанной окружности;
4) Верно, здесь небольшая логическая ловушка: описанная окружность обязательно проходит через все три вершины треугольника, утверждение "хотя бы две" является включением в первое высказывание - тоже истинно.
ответ: 134.