В основании правильной 4-уг. пирамиды лежит квадрат, так как боковое ребро образует угол в 45 градусов, то мы получаем равнобедренный прямоугольный треугольник, в котором высота и 1/2 диагонали квадрата катеты, а боковое ребро -гипотенуза , по теореме пифагора находим катеты (а), они у нас равны между собой и равны а^2+а^2=4^2 2а^2=16 а^=8 а=2V2см - это мы нашли высоту
площадь боковой поверхности пирамиды равна 4 площадям боковых граней, сторона квадрата (b в квадрате), лежащего в основании равна 2а в квадрате (по теореме пифагора) b^2=2а^2=2*(2V2)^2 b=4см найдем апофему (с) с^2=4^2-(b/2)^2=16-4=12 с=V12 c=2V3 cм
Рассмотрим треугольник со сторонами 13,14 и 15., соответственно, угол алфа лежит против диагонали, по теореме косинусов его cos(alfa)=5/13,sin(alfa)=12/13 следовательно, по формуле cos(alfa)=2*cos^2(alfa/2)-1 cos(alfa/2)=3/sqrt(13) sin(alfa/2)=2/sqrt(13) sin(beta)=sin(alfa)=12/13 cos(beta)=-5/13 Рассмотрим треугольник, отсекаемый биссектрисой с углами alfa/2, beta и gamma при стороне 13. sin(180-gamma)=sin(gamma)=sin(alfa/2+beta)=sin(alfa/2)*cos(beta)+cos(alfa/2)*sin(beta)=2/sqrt(13)*(-5/13)+3/sqrt(13)*12/13= 2/sqrt(13) Значит угол gamma=alfa/2 и отсекаемый треугольник равнобедренный с двумя сторонами по 13. Значит, его площадь равна: S=13*13*1/2*sin(beta)=6*13=78 Аналогично находится площадь другого треугольника.
В основании правильной 4-уг. пирамиды лежит квадрат, так как боковое ребро образует угол в 45 градусов, то мы получаем равнобедренный прямоугольный треугольник, в котором высота и 1/2 диагонали квадрата катеты, а боковое ребро -гипотенуза , по теореме пифагора находим катеты (а), они у нас равны между собой и равны а^2+а^2=4^2 2а^2=16 а^=8 а=2V2см - это мы нашли высоту
площадь боковой поверхности пирамиды равна 4 площадям боковых граней, сторона квадрата (b в квадрате), лежащего в основании равна 2а в квадрате (по теореме пифагора) b^2=2а^2=2*(2V2)^2 b=4см найдем апофему (с) с^2=4^2-(b/2)^2=16-4=12 с=V12 c=2V3 cм
S=4*(1/2)*b*c=2*4*2V3=16V3 кв.см
Рассмотрим треугольник со сторонами 13,14 и 15.,
соответственно, угол алфа лежит против диагонали, по теореме косинусов его cos(alfa)=5/13,sin(alfa)=12/13
следовательно, по формуле cos(alfa)=2*cos^2(alfa/2)-1
cos(alfa/2)=3/sqrt(13)
sin(alfa/2)=2/sqrt(13)
sin(beta)=sin(alfa)=12/13
cos(beta)=-5/13
Рассмотрим треугольник, отсекаемый биссектрисой с углами
alfa/2, beta и gamma при стороне 13.
sin(180-gamma)=sin(gamma)=sin(alfa/2+beta)=sin(alfa/2)*cos(beta)+cos(alfa/2)*sin(beta)=2/sqrt(13)*(-5/13)+3/sqrt(13)*12/13=
2/sqrt(13)
Значит угол gamma=alfa/2 и отсекаемый треугольник равнобедренный с двумя сторонами по 13.
Значит, его площадь равна: S=13*13*1/2*sin(beta)=6*13=78
Аналогично находится площадь другого треугольника.