Дан прямоугольный равнобедренный треугольник АВС с прямым углом А. Квадрат KLMN расположен, как на рисунке: точки K, L, N лежат
на сторонах АВ, ВС, АС соответственно, а точка М расположена внутри
треугольника АВС.
Найдите длину отрезка AC, если известно, что АК = 7, AN = 2.
<ВАР=30⁰, <APB = 60⁰ в треугольнике АВР. Смежный угол <APC=120⁰
Треугольник АРС - равнобедренный (АР=РС по доказанному), РО - высота, медиана, биссектриса, т.е. <АРО=<СРО=60⁰, <РАО=30⁰ (сумма углов треугольника равна 180⁰)
<ВАД=90⁰, <ВАР=30⁰, <РАС=30⁰ <ОАТ=90-(30+30)=30⁰, значит <РАТ=60⁹
Получили, треугольник АРТ - равносторонний, т.к. <P=<A=<t=60⁰
Значит, РТ=АР=АТ=8см, Р(АРСТ)=8*4=32(см)
ответ:32см