Дано:
ABC - равнобедренный треугольник
AC - Основание треугольника = AB - 3 или BC - 3
P = 15.6 см - Периметр треугольника
Так как треугольник равнобедренный, его боковые стороны равны.
AB = BC
Пусть x - любая боковая сторона треугольника
Так как нам известно, что основание треугольника на 3 раза меньше, мы можем написать уравнение.
P = x + x +(x-3) - Периметр - Сумма длин всех сторон(Боковая сторона+ Боковая сторона + Основание)
15.6=x+x+(x-3)
15.6=3x-3
18.6 = 3x
x = 6.2 - Боковая сторона
Основание = 6.2 - 3 = 3.2
Проверка:
3.2+6.2 +6.2 = 15.6 см
ответ: 6.2, 6.2, 3.2 см
5 х - длина 1-й диагонали
12 х - длина 2-й диагонали
Площадь ромба 120 см² равна половине произведения диагоналей.
120 = 0,5·5x·12x
120 = 30 х²
х² = 4
х = 2
5 х = 10 см - длина 1-й диагонали
12 х = 24 см - длина 2-й диагонали
Диагонали ромба разбивают его на 4 равных прямоугольных треугольника.
В каждом тр-ке катетами являются половинки диагоналей, равные 5 см и 12 см, а гипотенузой является сторона ромба а.
Тогда по теореме Пифагора:
а² = 25 + 144 = 169
а = 13 см - сторона ромба
Р = 4 а = 4·13 = 52 см - периметр ромба
Дано:
ABC - равнобедренный треугольник
AC - Основание треугольника = AB - 3 или BC - 3
P = 15.6 см - Периметр треугольника
Так как треугольник равнобедренный, его боковые стороны равны.
AB = BC
Пусть x - любая боковая сторона треугольника
Так как нам известно, что основание треугольника на 3 раза меньше, мы можем написать уравнение.
P = x + x +(x-3) - Периметр - Сумма длин всех сторон(Боковая сторона+ Боковая сторона + Основание)
15.6=x+x+(x-3)
15.6=3x-3
18.6 = 3x
x = 6.2 - Боковая сторона
Основание = 6.2 - 3 = 3.2
Проверка:
3.2+6.2 +6.2 = 15.6 см
ответ: 6.2, 6.2, 3.2 см
5 х - длина 1-й диагонали
12 х - длина 2-й диагонали
Площадь ромба 120 см² равна половине произведения диагоналей.
120 = 0,5·5x·12x
120 = 30 х²
х² = 4
х = 2
5 х = 10 см - длина 1-й диагонали
12 х = 24 см - длина 2-й диагонали
Диагонали ромба разбивают его на 4 равных прямоугольных треугольника.
В каждом тр-ке катетами являются половинки диагоналей, равные 5 см и 12 см, а гипотенузой является сторона ромба а.
Тогда по теореме Пифагора:
а² = 25 + 144 = 169
а = 13 см - сторона ромба
Р = 4 а = 4·13 = 52 см - периметр ромба