Дан прямоугольный треугольник abc с гипотенузой ac = 13 см и катетом bc = 5 см. отрезок sa, равный 12 см, — перпендикуляр к плоскости abc. найдите угол между прямой sb и плоскостью abc.
1) Находим катет AB треугольника ABC по теореме Пифагора (a^2 + b^2 = c^2):
c^2 - a^2 = b^2
13^2 - 5^2= 169 - 25=144
a^2=144 a=12 | катет AB=12см
Так как AS является перпендикуляром к AB, то угол BAS=90градусов, следовательно, треугольник BAS является прямоугольным, причем катеты AB и AS равны. А у равнобедренного прямоугольного треугольника углы равны 45градусов.
1) Находим катет AB треугольника ABC по теореме Пифагора (a^2 + b^2 = c^2):
c^2 - a^2 = b^2
13^2 - 5^2= 169 - 25=144
a^2=144 a=12 | катет AB=12см
Так как AS является перпендикуляром к AB, то угол BAS=90градусов, следовательно, треугольник BAS является прямоугольным, причем катеты AB и AS равны. А у равнобедренного прямоугольного треугольника углы равны 45градусов.
ответ:45градусов.