1. Верно ли утверждение: "Четырехугольник является правильным, если все его углы равны между собой"?
б) нет, так как должны быть равны и стороны, иначе это может быть прямоугольник.
2. Все стороны многоугольника являются хордами окружности. Можно ли утверждать, что многоугольник описан около окружности?
б) нет, этот многоугольник вписан в окружность.
3. Чему равна дуга окружности (в градусах), стягиваемая стороной правильного треугольника?
б) 120° (360° : 3) .
4. Сколько сторон имеет правильный многоугольник, у которого сумма всех его углов равна 540°?
Сумма углов многоугольника равна 180°(n - 2), где n - количество сторон.
180°(n - 2) = 540°
n - 2 = 3
n = 5
а) 5.
5. Чему равна длина окружности, если ее диаметр равен 50 см?
С = πd = 50π см
а) 50π см.
6. Из круга, радиус которого равен 20 см, вырезан сектор. Дуга сектора равна 90°. Чему равна площадь оставшейся части круга?
Дуга оставшейся части круга:
α = 360° - 90° = 270°
Sсект = πR² · α / 360°
Sсект = π · 400 · 270° / 360° = 300π см²
а) 300π см²
40 см² и 90 см².
Объяснение:
Теорема: отношение площадей подобных многоугольников равно квадрату коэффициента подобия.
1) Коэффициент подобия многоугольников равен отношению их периметров:
k = 3 : 2 = 1,5.
2) Квадрат коэффициента подобия:
k² = 1,5² = 2,25.
3) Пусть площадь меньшего многоугольника равна х, тогда площадь большего многоугольника равна 2,25 х. Составим уравнение и найдём х:
х + 2,25 х = 130
3,25 х = 130
х = 130 : 3,25
х = 40 см² - площадь меньшего многоугольника;
2,25х = 2,25 · 40 = 90 см² - площадь большего многоугольника.
ответ: 40 см² и 90 см².
1. Верно ли утверждение: "Четырехугольник является правильным, если все его углы равны между собой"?
б) нет, так как должны быть равны и стороны, иначе это может быть прямоугольник.
2. Все стороны многоугольника являются хордами окружности. Можно ли утверждать, что многоугольник описан около окружности?
б) нет, этот многоугольник вписан в окружность.
3. Чему равна дуга окружности (в градусах), стягиваемая стороной правильного треугольника?
б) 120° (360° : 3) .
4. Сколько сторон имеет правильный многоугольник, у которого сумма всех его углов равна 540°?
Сумма углов многоугольника равна 180°(n - 2), где n - количество сторон.
180°(n - 2) = 540°
n - 2 = 3
n = 5
а) 5.
5. Чему равна длина окружности, если ее диаметр равен 50 см?
С = πd = 50π см
а) 50π см.
6. Из круга, радиус которого равен 20 см, вырезан сектор. Дуга сектора равна 90°. Чему равна площадь оставшейся части круга?
Дуга оставшейся части круга:
α = 360° - 90° = 270°
Sсект = πR² · α / 360°
Sсект = π · 400 · 270° / 360° = 300π см²
а) 300π см²
40 см² и 90 см².
Объяснение:
Теорема: отношение площадей подобных многоугольников равно квадрату коэффициента подобия.
1) Коэффициент подобия многоугольников равен отношению их периметров:
k = 3 : 2 = 1,5.
2) Квадрат коэффициента подобия:
k² = 1,5² = 2,25.
3) Пусть площадь меньшего многоугольника равна х, тогда площадь большего многоугольника равна 2,25 х. Составим уравнение и найдём х:
х + 2,25 х = 130
3,25 х = 130
х = 130 : 3,25
х = 40 см² - площадь меньшего многоугольника;
2,25х = 2,25 · 40 = 90 см² - площадь большего многоугольника.
ответ: 40 см² и 90 см².