В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
yanaskazka777
yanaskazka777
14.02.2020 08:40 •  Геометрия

Дан прямоугольный треугольник АВД с прямым углом Д. Установите соответствие между отношениями сторон и тригонометрическими функциями острого угла. ​


Дан прямоугольный треугольник АВД с прямым углом Д. Установите соответствие между отношениями сторон

Показать ответ
Ответ:
Лиза505090
Лиза505090
14.02.2020 10:41

Нарисовал чертеж с обозначениями. Во-первых, описать окружность можно только около равнобедренной трапеции. Надо найти радиус этой окружности. Заметим, что окружность эта описана как около трапеции ABCD, так и около треугольника ABD.

Для треугольника ABD воспользуемся теоремой синусов и получим

\frac{BD}{sinA} =2R

То есть R = \frac{BD}{2sinA} =\frac{BD}{2*\frac{1}{2} }=BD

Даже вот так. Радиус этой окружности равен длине стороны BD.

Осталось лишь её найти. Раз трапеция равнобедренная, то и прямоугольные треугольники ABH и DCK равны (по катету - высоте и гипотенузе - боковой стороне трапеции). Значит, AH = KD

Тогда AD = AH + HK + KD = 2*AH + HK

BCKH - прямоугольник, BC = HK = 12

AH = 0.5 * (AD - HK) = 0.5 * (20 - 12) = 4

HD = HK + KD = 12 + 4 = 16

Не хватает стороны BH. Её можно найти из треугольника ABH

ctgA = \frac{AH}{BH}; \sqrt{3} = \frac{4}{BH}; BH = \frac{4}{\sqrt{3} } =\frac{4\sqrt{3} }{3}

Теперь по теореме Пифагора ищем BD

BD^2 = BH^2 + HD^2

BD^2 = \frac{16}{3}+16^2 = \frac{16+3*16^2}{3}=\frac{16}{3}(1+3*16)=\frac{16}{3}*49\\ BD = \sqrt{\frac{4^2*7^2}{3} }=\frac{4*7}{\sqrt{3}} = \frac{28}{\sqrt{3} } =\frac{28\sqrt{3} }{3}

ответ: R = \frac{28\sqrt{3}}{3}


Вокруг трапеции описано круг. найти радиус круга, если основания трапеции 20 см и 12 см, угол между
0,0(0 оценок)
Ответ:
hlipkaya
hlipkaya
05.10.2020 09:35

Чертеж прилагается. A - центр окружности. Отметим, что треугольник BCD - прямоугольный, так как угол CBD опирается на диаметр. Далее, известно, что хорда BK перпендикулярна диаметру CD. Пусть H - точка пересечения хорды и диаметра. Получается, что BH - высота в прямоугольном треугольнике, проведенная из вершины прямого угла (хотя это не так важно окажется). Также известно, хорда делится этим самым диаметром пополам. Это следует из того, что треугольник BAK - равнобедренный, так как AK=AB (радиусы), а AH - высота, проведенная к основанию (в смысле не к боковой стороне), но значит и медиана тоже. Тогда BH = 1/2 * BK = 12. Треугольник BHA - прямоугольный, по теореме Пифагора

BA^2 = BH^2 + AH^2; (\frac{25}{2})^2=12^2+AH^2; \frac{625}{4} = \frac{576}{4}+AH^2\\ \frac{49}{4}=AH^2; AH=\frac{7}{2}

CH = AC - AH = \frac{25}{2}-\frac{7}{2}=\frac{18}{2}=9

HD = AD + AH = \frac{25}{2}+\frac{7}{2} = \frac{32}{2} =16

Теперь лишь из прямоугольных треугольников BHC и BHD по теореме Пифагора нужно найти BC и BD соответственно.

BC^2=HC^2+BH^2; BC^2 = 9^2+12^2=144+81=225=15^2; BC=15

BD^2 = BH^2+HD^2; BD^2=12^2+16^2=144+256=400=20^2; BD=20.

ответ: 15 и 20.


Хорда длиной 24 см перпендикулярна к диаметру, длина которого 25. найти расстояние от одного конца х
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота