Дан прямоугольный треугольник авс с гипотенузой ав, у которого угол между высотой сн и биссектрисой см равен 12 градусов. найдите больший острый угол треугольника авс. заранее знаю что ответ 57 градусов. желательно расписать
Задача имеет два решения: 1) Угол при основании равен 42°. Тогда другой угол при основании равен тоже 42°. По теореме о сумме углов треугольника угол при вершине равен: 180° - 42° - 42° = 96°. Угол при вершине равен 42°. Тогда сумма углов при основании равна: 180° - 42° - 138°, а сами углы равны 138°:2 = 69°. ответ: 42°, 42°, 96°или 42°, 69°, 69°.
Во втором случае только угол при вершине может быть равен 94°, т.к. тогда сумме двух углов уже будет превосходить 180°: 94° + 94° = 188° > 180°. Угол при вершине равен 94°. Тогда сумме углов при основании равна: 180° - 94° = 86°, а каждый угол при основании равен 86°:2 = 43°. ответ: 94°, 43°, 43°.
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
1) Угол при основании равен 42°.
Тогда другой угол при основании равен тоже 42°.
По теореме о сумме углов треугольника угол при вершине равен:
180° - 42° - 42° = 96°.
Угол при вершине равен 42°.
Тогда сумма углов при основании равна:
180° - 42° - 138°, а сами углы равны 138°:2 = 69°.
ответ: 42°, 42°, 96°или 42°, 69°, 69°.
Во втором случае только угол при вершине может быть равен 94°, т.к. тогда сумме двух углов уже будет превосходить 180°:
94° + 94° = 188° > 180°.
Угол при вершине равен 94°.
Тогда сумме углов при основании равна:
180° - 94° = 86°, а каждый угол при основании равен 86°:2 = 43°.
ответ: 94°, 43°, 43°.
∠ALB = 120°.
Объяснение:
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.