Задачи такого рода решаются по теореме Пифагора c^2= a^2+b^2 (квадрат гипотенузы равен сумме квадратов катетов). Находим из всех значений наибольшую сторону, в первом случае это корень из 15, следовательно это наша гипотенуза, а корень из 11 и 2 катеты предпологаемого прямоугольного треугольника. Подставив значения в формулу, получаем: 15=11+4. Отсюда следует, что это действительно прямоугольный треугольник. 2) 16=10+6. Тоже прямоугольный. 3) 14=12+2. Прямоугольный. 4) 22=19+8. Не подходит. 5) 17=5+12. Прямоугольный. 6)26=17+9. Прямоугольный. 7) 19=15+4. Прямоугольный.
Проведём высоту к основанию. Она разделит треугольник на два прямоугольных треугольника с катетом 9 и острым углом 60 (половина основания и половина противолежащего угла соответственно). Гипотенуза такого треугольника равна 9/sin60=6√3, а второй катет равен (6√3)*cos60=3√3. Площадь исходного треугольника равна площади 2 его половинок - прямоугольных треугольников, а площадь прямоугольного треугольника равна произведению катетов. Тогда S=1/2*2*9*3√3=27√3, а боковая сторона равна 6√3.
2) 16=10+6. Тоже прямоугольный.
3) 14=12+2. Прямоугольный.
4) 22=19+8. Не подходит.
5) 17=5+12. Прямоугольный.
6)26=17+9. Прямоугольный.
7) 19=15+4. Прямоугольный.
6√3
Объяснение:
Проведём высоту к основанию. Она разделит треугольник на два прямоугольных треугольника с катетом 9 и острым углом 60 (половина основания и половина противолежащего угла соответственно). Гипотенуза такого треугольника равна 9/sin60=6√3, а второй катет равен (6√3)*cos60=3√3. Площадь исходного треугольника равна площади 2 его половинок - прямоугольных треугольников, а площадь прямоугольного треугольника равна произведению катетов. Тогда S=1/2*2*9*3√3=27√3, а боковая сторона равна 6√3.