Центр описанного около треугольника круга находится на пересечении срединных перпендикуляров сторон.Воспользуемся формулой площади: S = (1/2)a*b*sin α, гда а и в смежные стороны треугольника , α - угол между ними. Боковые стороны равны - обозначим "х". По заданию √2+1 = (1/2)х*х*sin 45° = (1/2)х²*(√2/2) = √2*х² / 4. Отсюда х = √((4√2+4)/√2) = √((4√2+4) / √2) = 2√((√2+1) / √2) = = 2.613126. Сторону АС находим по формуле косинусов: АС = √(х²+х²-2*х*х*cos 45°) = x√(2-√2) = 2. Тогда радиус круга, описанного около заданного треугольника, равен R = b / (2sin B) = 2 / (2*(√2/2)) = 2 / √2 = √2. Площадь круга S = πR² = 2π = 6.283185 кв.ед.
В этой задаче есть несколько методов решения. Примем геометрический метод. Основание высоты из точки В на сторону АС находится за её пределами . Продлим сторону АС до точки Д - основание высоты. Высота равна 7*cos 30° = 7*√3/2 = 6.0621778. Искомый отрезок ДЕ - гипотенуза в прямоугольном треугольнике ДЕК. ДК = (АС+АВ*sin 30) / 2 = (8+7*0.5) / 2 = 11.5 / 2 = 5.75. EK = BD / 2 = 7*√3/(2*2) = 7*√3/4 = 3.03089. Это следует из того, что проекции точки Е на катеты ВД и ДС делят их пополам. DE = √(5,75²+ 3.03089²) = √( 33.0625 + 9.1875 42.25 6.5 = √42.25 = 6.5.
S = (1/2)a*b*sin α, гда а и в смежные стороны треугольника , α - угол между ними. Боковые стороны равны - обозначим "х".
По заданию √2+1 = (1/2)х*х*sin 45° = (1/2)х²*(√2/2) = √2*х² / 4.
Отсюда х = √((4√2+4)/√2) = √((4√2+4) / √2) = 2√((√2+1) / √2) =
= 2.613126.
Сторону АС находим по формуле косинусов:
АС = √(х²+х²-2*х*х*cos 45°) = x√(2-√2) = 2.
Тогда радиус круга, описанного около заданного треугольника, равен R = b / (2sin B) = 2 / (2*(√2/2)) = 2 / √2 = √2.
Площадь круга S = πR² = 2π = 6.283185 кв.ед.
Примем геометрический метод.
Основание высоты из точки В на сторону АС находится за её пределами . Продлим сторону АС до точки Д - основание высоты.
Высота равна 7*cos 30° = 7*√3/2 = 6.0621778.
Искомый отрезок ДЕ - гипотенуза в прямоугольном треугольнике ДЕК.
ДК = (АС+АВ*sin 30) / 2 = (8+7*0.5) / 2 = 11.5 / 2 = 5.75.
EK = BD / 2 = 7*√3/(2*2) = 7*√3/4 = 3.03089. Это следует из того, что проекции точки Е на катеты ВД и ДС делят их пополам.
DE = √(5,75²+ 3.03089²) = √( 33.0625 + 9.1875 42.25 6.5 = √42.25 = 6.5.