Сторону а основания найдём по теореме косинусов: а = √(8²+8²-2*8*8*(√3/2)) = 8√(2-√3) ≈ 4,1411047 см. Далее можно идти двумя путями: -1) по формуле Герона по трём сторонам найти площадь грани и умножать её на 6, -2) найти высоту Н грани, и по ней и периметру основания найти площадь боковой поверхности.
1) S = √(p(p-a)(p-b)(p-c)). р = (2*8+4,1411047)/2 = 10,07055 см. Подставляем: S = √(10,07055*2,07055236 *5,9294476 *2,0705524) = √256 = 16 см². Тогда Sбок = 6S = 6*16 = 96 см².
2) Периметр основания Р = 6а = 6*4,1411047 = 24,84663 см. Н = 8*cos 15° = 8*0,965926 = 7,72740661 см. Sбок = (1/2)РН = (1/2)*24,84663*7,72740661 = 96 см².
1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.
Радиус равен половине диагонали основания.
R = √(3² + 4²) = 5 см.
Тогда высота Н пирамиды равна:
Н = √(13² - 5²) = √(169 - 25) = 12 см.
2) Будем считать, что в задании имеется в виду, что высота пирамиды проецируется на основание в вершину прямого угла.
Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.
Гипотенуза основания равна √(9² + 12²) = 15 см.
Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.
Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.
а = √(8²+8²-2*8*8*(√3/2)) = 8√(2-√3) ≈ 4,1411047 см.
Далее можно идти двумя путями:
-1) по формуле Герона по трём сторонам найти площадь грани и умножать её на 6,
-2) найти высоту Н грани, и по ней и периметру основания найти площадь боковой поверхности.
1) S = √(p(p-a)(p-b)(p-c)).
р = (2*8+4,1411047)/2 = 10,07055 см.
Подставляем:
S = √(10,07055*2,07055236 *5,9294476 *2,0705524) = √256 = 16 см².
Тогда Sбок = 6S = 6*16 = 96 см².
2) Периметр основания Р = 6а = 6*4,1411047 = 24,84663 см.
Н = 8*cos 15° = 8*0,965926 = 7,72740661 см.
Sбок = (1/2)РН = (1/2)*24,84663*7,72740661 = 96 см².
1) Если все боковые стороны (это рёбра) пирамиды имеют одинаковую длину, то их проекции на основание - радиусы R описанной окружности вокруг основания.
Радиус равен половине диагонали основания.
R = √(3² + 4²) = 5 см.
Тогда высота Н пирамиды равна:
Н = √(13² - 5²) = √(169 - 25) = 12 см.
2) Будем считать, что в задании имеется в виду, что высота пирамиды проецируется на основание в вершину прямого угла.
Тогда 2 боковых грани пирамиды вертикальны, одна - наклонная.
Гипотенуза основания равна √(9² + 12²) = 15 см.
Высота основания на гипотенузу равна (9*12)/15 = (36/5) = 7,2 см.
Высота наклонной боковой грани равна √(8² + 7,2²) = 0,8√181 ≈ 10,7629 см.
Теперь можно определить площади боковых граней.
Sбок = (1/2) *(6*8 + 12*8 + 15*(4/5)√181) = (72 + 6√181) см².
Площадь основания Sо = (1/2)(9*12) = 54 см².
Полная площади пирамиды равна 54 + 72 + 6√181 = 126 + 6√181 см².
Объём пирамиды равен (1/3)*54*8 = 144 см³.