Дан прямоугольный треугольник MNP с прямым углом M. Установите соответствия между отношениями сторон и тригонометрическими функциями острого угла: а) МР/МN b) MP/PN c) MN/PN
1) синус угла P
2) косинус угла P
3) синус угла N
4) косинус угла N
5) тангенс угла P
6) тангенс угла N
7) катангенс угла M
8) катангенс угла N
дәм
------
Уточним, что данные две точки, которые лежат на кругах разных основ цилиндра, расположены на окружностях, ограничивающих эти круги, а расстояние от оси к отрезку 4 см - это расстояние от оси цилиндра до отрезка 4 см.
Сделаем рисунок, назовем данный отрезок АВ.
АВ и ось цилиндра ОО1 - скрещивающиеся прямые, т.к. не параллельны и не пересекаются.
Расстояние между скрещиваюимися прямыми - это расстояние между одной из этих прямых и параллельной ей плоскостью, проходящей через другую прямую.
Проведем параллельно ОО1 плоскость, содержащую АВ. Для этого из А и В проведем к противоположным основаниям перпендикуляры АС и ВД.
Соединим все четыре точки. АС=ВД= высоте цилиндра =17 см
АДВС - прямоугольник, т.к. основания цилиндра параллельны и углы ДВС, АСВ=90º по построению..
АВ лежит в получившейся плоскости как диагональ этого прямоугольника.
Расстояние от прямой ОО1 до параллельной ей плоскости измеряют перпендикуляром.
Проведем из центра О перпендикуляр к хорде ВС.
ВН=НС по свойству радиуса и хорды.
Из прямоугольного треугольника ОНВ найдем длину НВ по т.Пифагора:
ВН²=ВО²-ОН²=100-16=84
ВН=√84
BC=2 BH=2√84
Из прямоугольного треугольника АВС по т. Пифагора найдем АВ:
АВ²=ВС²+АС²=4*84+289=625
АВ=√625=25 см
Рассмотрим треугольники MON и KOF, в них NO=OF (по условию), MO=OK (т.к. NO - биссиктриса), угол MON= углу FOK (как вертикальные), значит треугольники равны (по двум сторонам и углу между ними)
№2
Рассмотрим треугольники ABP и CBQ, в них AP=QC (по условию), AB=BC (по условию), угол BAP= углу BCQ (в равнобедренных треугольниках углы при основании равны), следовательно треугольники ABP и CBQ равны. Из равенства треугольников берем равенство соответственных сторон BP и BQ, следовательно треугольник BPQ равнобедренный т.к. BP=BQ