№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам.
№2
Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН
КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град.
ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2
2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
№2 ∠АСВ = 180° - ∠1 по свойству смежных углов,
∠DCB = 180° - ∠2 по свойству смежных углов,
∠1 = ∠2 по условию, значит и
∠АСВ = ∠DCB
AC = DC по условию,
ВС - общая сторона для треугольников АВС и DBC, ⇒
ΔАВС = ΔDBC по двум сторонам и углу между ними.
№3Треугольник AOB равен треугольнику COD. Поэтому ВО=OD, АО=ОС.
В ∆ ВОС и ∆ AOD стороны АО=ОС, BO=OD, углы ВОС=АОD как вертикальные.
∆ ВОС=∆ AOD по первому признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны -- ВС=AD.
Объяснение:
№1