AD II BC, поэтому нам нужен угол между BG и BC. Задача свелась к ПЛОСКОЙ. ВСЕ ДАЛЬНЕЙШЕЕ ПРОИСХОДИТ В ПЛОСКОСТИ SBC. (Я не буду пояснять, что высота треугольника SBC SK - это апофема пирамиды, и так далее. Просто ВСЁ ДАЛЬШЕ ПРОИСХОДИТ В ПЛОСКОСТИ SBC, про остальную пирамиду забыли навеки.)
Есть треугольник SBC, ВС = 4, SB = SC = 3*корень(6); Высота SK равна
SK = корень(54 - 4) = 5*корень(2); (ясно, что BK = KC = 2);
Точка G расположена на SC на расстоянии SC/3 от S. Поэтому перпендикуляр из G на ВС равен (2/3)*SK. Пусть его основание M, GM = 10*корень(2)/3, а
ВМ = ВК + КМ = 2 + 2/3 = 8/3; (поясню - KM = KC/3 = 2/3)
как мне кажется, достаточно для решения
tg(угол GBC) = GM/BM = 5*корень(2)/4;
Напомню, что угол GBC и есть угол между BG и AD, поскольку AD II ВС.
Диагональ ВD делит трапецию на два прямоугольных треугоьника АВD и ВDС. Так как сумма углов ВАD и ВСD равна 90°. и в то же время сумма острых углов этих треугольников также равна 90°, то угол АВD=ВСD, значит, и ∠ВDС=∠ВАD. Треугольники АВD и ВDС подобны. Из их подобия АD:ВD=ВD:ВС ВДD²=2 ВС Из треугольника ВСD по т. Пифагора ВС²=СD²-ВС² Но ВD²=2ВС Произведя в уравнении замену, получим: 2 ВС=СD²-ВС² ⇒ ВС²+2ВС-25=0 Решим квадратное уравнение. D=b²-4ac=2²-4·1·(-25)=104 ВС₁=(-2+2√26):2=√26-1≈ 4,099 Второй корень отрицательный и не подходит. По т.Пифагора найдем ВD. ВD²=2ВС=8,198 Из С параллельно ВD опустим отрезок С до пересечения с продолжением АD в точке Н. В прямоугольном треугольнике АСН гипотенуза АН=АD+DН DН=ВС=4,099 СН²=ВD²= 8,198 АС²=АН²+СН²=(2+4,099)²+8,198 АС²≈45,3958 АС≈6,7376 ---- [email protected]
AD II BC, поэтому нам нужен угол между BG и BC. Задача свелась к ПЛОСКОЙ. ВСЕ ДАЛЬНЕЙШЕЕ ПРОИСХОДИТ В ПЛОСКОСТИ SBC. (Я не буду пояснять, что высота треугольника SBC SK - это апофема пирамиды, и так далее. Просто ВСЁ ДАЛЬШЕ ПРОИСХОДИТ В ПЛОСКОСТИ SBC, про остальную пирамиду забыли навеки.)
Есть треугольник SBC, ВС = 4, SB = SC = 3*корень(6); Высота SK равна
SK = корень(54 - 4) = 5*корень(2); (ясно, что BK = KC = 2);
Точка G расположена на SC на расстоянии SC/3 от S. Поэтому перпендикуляр из G на ВС равен (2/3)*SK. Пусть его основание M, GM = 10*корень(2)/3, а
ВМ = ВК + КМ = 2 + 2/3 = 8/3; (поясню - KM = KC/3 = 2/3)
как мне кажется, достаточно для решения
tg(угол GBC) = GM/BM = 5*корень(2)/4;
Напомню, что угол GBC и есть угол между BG и AD, поскольку AD II ВС.
Проверьте арифметику, надеюсь, я не ошибся нигде.
Так как сумма углов ВАD и ВСD равна 90°. и в то же время сумма острых углов этих треугольников также равна 90°, то угол АВD=ВСD,
значит, и ∠ВDС=∠ВАD.
Треугольники АВD и ВDС подобны.
Из их подобия
АD:ВD=ВD:ВС
ВДD²=2 ВС
Из треугольника ВСD по т. Пифагора
ВС²=СD²-ВС²
Но ВD²=2ВС
Произведя в уравнении замену, получим:
2 ВС=СD²-ВС² ⇒
ВС²+2ВС-25=0
Решим квадратное уравнение.
D=b²-4ac=2²-4·1·(-25)=104
ВС₁=(-2+2√26):2=√26-1≈ 4,099
Второй корень отрицательный и не подходит.
По т.Пифагора найдем ВD.
ВD²=2ВС=8,198
Из С параллельно ВD опустим отрезок С до пересечения с продолжением АD в точке Н.
В прямоугольном треугольнике АСН гипотенуза
АН=АD+DН
DН=ВС=4,099
СН²=ВD²= 8,198
АС²=АН²+СН²=(2+4,099)²+8,198
АС²≈45,3958
АС≈6,7376
----
[email protected]