Дан прямоугольный треугольник, величина одного острого угла которого составляет 33°. Опредили величину второго острого угла этого треугольника. Величина второго угла равна :
Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.
б) пары односторонних углов:
∠5 и ∠6, ∠4 и ∠8 - Внутренние односторонние углы
∠1 и ∠2, ∠3 и ∠7 - Внешние односторонние углы
Внутренние односторонние углы - это углы, которые лежат по одну сторону от секущей, внутри между параллельными прямыми Внешние односторонние углы - это углы, которые лежат по одну сторону от секущей, на внешних сторонах параллельных прямых.
в) пары накрест лежащих углов:
∠4 и ∠5, ∠6 и ∠8 - Внутренние накрест лежащие углы
∠1 и ∠7, ∠2 и ∠3 - Внешние накрест лежащие углы
Внутренние накрест лежащие углы это два угла во внутренней области параллельных прямых и на разных сторонах секущей.Внешние накрест лежащие углы это два угла во внешней области параллельных прямых и на разных сторонах секущей.
г) пары соответственных углов.:
∠2 и ∠5, ∠6 и ∠1, ∠7 и ∠8 ,∠4 и ∠3
Соответственные углы это два угла, один во внешней области, один во внутренней области параллельных прямых, и которые лежат на одной стороне секущей.
Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.
Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание.
Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание.
Вывод: радиус сферы, вписанной в прямую призму высота которой равна h, равен половине этой высоты.
а) секущую для прямых а и b: с- секущая
Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.б) пары односторонних углов:
∠5 и ∠6, ∠4 и ∠8 - Внутренние односторонние углы
∠1 и ∠2, ∠3 и ∠7 - Внешние односторонние углы
Внутренние односторонние углы - это углы, которые лежат по одну сторону от секущей, внутри между параллельными прямыми Внешние односторонние углы - это углы, которые лежат по одну сторону от секущей, на внешних сторонах параллельных прямых.в) пары накрест лежащих углов:
∠4 и ∠5, ∠6 и ∠8 - Внутренние накрест лежащие углы
∠1 и ∠7, ∠2 и ∠3 - Внешние накрест лежащие углы
Внутренние накрест лежащие углы это два угла во внутренней области параллельных прямых и на разных сторонах секущей.Внешние накрест лежащие углы это два угла во внешней области параллельных прямых и на разных сторонах секущей.г) пары соответственных углов.:
∠2 и ∠5, ∠6 и ∠1, ∠7 и ∠8 ,∠4 и ∠3
Соответственные углы это два угла, один во внешней области, один во внутренней области параллельных прямых, и которые лежат на одной стороне секущей.Теорема 1. Шар можно вписать в прямую призму в том и только в том случае, если в основание призмы можно вписать окружность, а высота призмы равна диаметру этой окружности.
Следствие 1. Центр шара, вписанного в прямую призму, лежит в середине высоты призмы, проходящей через центр окружности, вписанной в основание.
Следствие 2. Шар, в частности, можно вписать в прямые: треугольную, правильную, четырехугольную (у которой суммы противоположных сторон основания равны между собой) при условии Н = 2r, где Н – высота призмы, r – радиус круга, вписанного в основание.
Вывод: радиус сферы, вписанной в прямую призму высота которой равна h, равен половине этой высоты.