Давай, равнобокая трапеция это равнобедренная трапеция, боковые стороны равны
1)Обозначим ее АВСД АД -нижнее основание ВС- верхнее
опустим высоту из вершины В на нижнее основание , получаем прямоугольный треугольник АНВ у которого угол А = 60 ( по условию) , значит другой угол этого треугольника = 30 градусов ( сумма острых углов в прямоугольном треугольнике = 90 градусов)
2)По условию боковая сторона = 4 = АВ , есть правило что катет лежащий против угла в 30 градусов равен половине гипотенузы,следовательно, АН= 1/2 АВ то есть = 2
3)Опустим высоту из вершины С , назовем СР, треугольники АНВ= СРД ( по 1 признаку) , значит стороны АН=РД=2
4) Вся сторона АД= 12, а ВС= НР значит отнимаем от АД-АН-РД= 8
Давай, равнобокая трапеция это равнобедренная трапеция, боковые стороны равны
1)Обозначим ее АВСД АД -нижнее основание ВС- верхнее
опустим высоту из вершины В на нижнее основание , получаем прямоугольный треугольник АНВ у которого угол А = 60 ( по условию) , значит другой угол этого треугольника = 30 градусов ( сумма острых углов в прямоугольном треугольнике = 90 градусов)
2)По условию боковая сторона = 4 = АВ , есть правило что катет лежащий против угла в 30 градусов равен половине гипотенузы,следовательно, АН= 1/2 АВ то есть = 2
3)Опустим высоту из вершины С , назовем СР, треугольники АНВ= СРД ( по 1 признаку) , значит стороны АН=РД=2
4) Вся сторона АД= 12, а ВС= НР значит отнимаем от АД-АН-РД= 8
ответ :8
Дано :
Четырёхугольник ABCD - параллелограмм.
∠В = 90°.
Доказать :
Четырёхугольник ABCD - прямоугольник.
Доказательство :
Прямоугольник - это четырёхугольник, все углы которого прямые (равны по 90°).
То есть нам нужно доказать, что у этого четырёхугольника все углы прямые.
- - -
Сумма соседних углов параллелограмма равна 180°.То есть -
∠А + ∠В = 180°
∠А = 180° - ∠В
∠А = 180° - 90°
∠А = 90°
∠А = ∠В = 90°.
Противоположные углы параллелограмма равны.То есть -
∠В = ∠D = 90°
∠А = ∠С = 90°.
Но также -
∠В = ∠А = ∠D = ∠С = 90°.
Поэтому, параллелограмм ABCD - прямоугольник.
- - -
Что требовалось доказать!