Рассмотрим треугольник АМВ. Он равнобедренный по условию (ВМ=АМ). Значит, углы при его основании АВ равны. <MBA=<MAB. Рассмотрим треугольник ВМС. Здесь <MBC=<ABC-<MBA=60-<MBA (углы равностороннего треугольника равны по 60 градусов). Рассмотрим треугольник АМС. Здесь <MAC=<BAC-<MAB=60-<MAB. Но <MBA=<MAB как показано выше, значит <MBC=<MAC. Тогда треугольники ВМС и АМС равны по двум сторонам и углу между ними: - ВС=АС, т.к. АВС - равносторонний треугольник; - ВМ=АМ по условию; - соответственные углы МВС и МАС равны как показано выше. В равных треугольниках ВМС и АМС равны соответственные углы МСВ и МСА, т.е. СМ - биссектриса угла АСВ.
1. Обозначим точку, в которую проведена высота, как Н. Рассмотрим треугольник АНС.
Если опустить вторую высоту, трапеция поделится на два равных прямоугольных треугольника и прямоугольник со сторонами 4 (высота) и 3 (меньшее основание). Найдем сторону CН:
CН = (9-3)/2=6/2=3 см.
2. Найдем по теореме Пифагора боковую сторону трапеции ABCD:
АС^2=AH^2+BH^2=3^2+4^2=9+16=25;
AC=5 см.
3. Найдем соотношение боковых сторон трапеции ABCD и A1B1C1D1:
AC/A1C1=5/15=1/3. Стороны подобных трапеций соотносятся, как 1 к 3.
4. Найдем основания и высоту трапеции A1B1C1D1, зная, что они соотносятся с основаниями трапеции ABCD, как 3 к 1:
<MBA=<MAB.
Рассмотрим треугольник ВМС. Здесь <MBC=<ABC-<MBA=60-<MBA (углы равностороннего треугольника равны по 60 градусов).
Рассмотрим треугольник АМС. Здесь <MAC=<BAC-<MAB=60-<MAB.
Но <MBA=<MAB как показано выше, значит
<MBC=<MAC.
Тогда треугольники ВМС и АМС равны по двум сторонам и углу между ними:
- ВС=АС, т.к. АВС - равносторонний треугольник;
- ВМ=АМ по условию;
- соответственные углы МВС и МАС равны как показано выше.
В равных треугольниках ВМС и АМС равны соответственные углы МСВ и МСА, т.е. СМ - биссектриса угла АСВ.
216 cм^2
Объяснение:
1. Обозначим точку, в которую проведена высота, как Н. Рассмотрим треугольник АНС.
Если опустить вторую высоту, трапеция поделится на два равных прямоугольных треугольника и прямоугольник со сторонами 4 (высота) и 3 (меньшее основание). Найдем сторону CН:
CН = (9-3)/2=6/2=3 см.
2. Найдем по теореме Пифагора боковую сторону трапеции ABCD:
АС^2=AH^2+BH^2=3^2+4^2=9+16=25;
AC=5 см.
3. Найдем соотношение боковых сторон трапеции ABCD и A1B1C1D1:
AC/A1C1=5/15=1/3. Стороны подобных трапеций соотносятся, как 1 к 3.
4. Найдем основания и высоту трапеции A1B1C1D1, зная, что они соотносятся с основаниями трапеции ABCD, как 3 к 1:
A1B1=3*3=9 см;
A1C1=3*9=27 см;
A1H1=3+4=12 см.
5. Найдем площадь A1B1C1D1:
S=(A1B1+C1D1)/2*A1H1=(27+9)/2*12=18*12=216 см^2.
ответ: 216 см^2