ответ:Если два отрезка пересекаются,то это выглядит так
Х
При пересечении отрезков получаются четыре вертикальных угла,противоположные углы равны между собой
А тут ещё речь идёт о треугольниках,и из условия известно,что отрезки пересекаются в точке О,которая является серединой каждого из них
Из условия задачи следует,что
ВО=ОК
АО=ОМ
И углы между сторонами равны,как вертикальные
Треугольники равны по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
ответ:Если два отрезка пересекаются,то это выглядит так
Х
При пересечении отрезков получаются четыре вертикальных угла,противоположные углы равны между собой
А тут ещё речь идёт о треугольниках,и из условия известно,что отрезки пересекаются в точке О,которая является серединой каждого из них
Из условия задачи следует,что
ВО=ОК
АО=ОМ
И углы между сторонами равны,как вертикальные
Треугольники равны по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника,то эти треугольники равны между собой
Объяснение:
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас