Решается, в принципе, не сложно. Даны 2 окружности, не сказано какие именно, поэтому рисуешь любые, проводишь секущую, и просто соедини центры этих окружностей, из секущей видим 2 хорды которые опираются на дуги, равенство которых нам и надо доказать, соединяем края хорд с центрами соответствующих окружностей и получаем 2 вписанных а главное равнобедренных треугольника (т.к. стороны это радиусы одних и тех же окружностей) а у равнобедренных треугольников углы при основании равны и мы видим что в точке пересечения окружностей наши треугольники соприкосаются образуя вертикальный угол, с следовательно они равны, и так же равны и остальные углы при основании этих треугольников, а т.к. сумма углов всегда 180 имеем что и углы в центрах окружностей у обоих треугольников тоже равны, а это центральные углы окружностей которые опираются на хорды, и если они равны то и дуги которые сводят хорды тоже равны.
Периметр ромба 104см, значит сторона ромба равна 26см диагонали ромба относятся как 5:12, значит и отношение их половин тоже равно 5:12, пусть длина половины одной диагонали равна 5х, длина половины другой диагонали 12х, диагонали ромба взаимно перпендикулярны. Применим теорему Пифагора к треугольнику, образованному стороной и половинами двух диагоналей. 169=676, =, =4, х=2. Длина одной диагонали 20см, длина другой диагонали 48см. Площадь ромба рана половине произведения его диагоналей. S=1/2*20*48=480()
диагонали ромба относятся как 5:12, значит и отношение их половин тоже равно 5:12, пусть длина половины одной диагонали равна 5х, длина половины другой диагонали 12х, диагонали ромба взаимно перпендикулярны.
Применим теорему Пифагора к треугольнику, образованному стороной и половинами двух диагоналей.
169=676, =, =4, х=2.
Длина одной диагонали 20см, длина другой диагонали 48см. Площадь ромба рана половине произведения его диагоналей.
S=1/2*20*48=480()