Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
Начерти 5 равных квадратов подряд, у тебя получится меньшая сторона= 1 часть, большая сторона равна 5 частям периметр-это сумма всех сторон складывай части сторон 1+1+5+5=12 частей периметр 3720 : 12=310 см это меньшая сторона 310 х 5 =1550 см большая сторона находи площадь 31 х 1550=480500 см кв 2) находи периметр первого 160+160+360+360=1040 м это длина первого и второго участков площадь первого будет 160 х 360=57600 м кв квадратный будет иметь сторону (160+360): 2=260 м площадь квадратного 260х260=67600 м кв удачи!
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg