Дан равнобедренный треугольник ABC с боковыми сторонами AB=BC. На основании расположены точки D и E так, что AD=EC, ∡CEB=120°. Определи ∡EDB. ∡EDB = °.
Дано : параллелограмма MNKF ( MF | | NK , MN | | FK ) , MO =OK , O ∈[AB] , A ∈ [NK] ,B∈[MF] .
док. MAKB параллелограмма
Рассмотрим ΔMOB и ΔKOA : они равны по второму признаку равенства треугольников , действительно: ∠MOB=∠KOA(вертикальные углы) ; ∠OMB =∠OKA(накрест лежащие углы) ; MO =OK (по условию) . Из равенства этих треугольников следует, что MB = KA, но они и параллельны MB | | KA (лежат на параллельных прямых MF и NK) . Значит MAKB параллелограмма по второму признаку(если противоположные стороны четырехугольника равны и параллельны то четырехугольник параллелограмма) .
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
док. MAKB параллелограмма
Рассмотрим ΔMOB и ΔKOA :
они равны по второму признаку равенства треугольников , действительно:
∠MOB=∠KOA(вертикальные углы) ;
∠OMB =∠OKA(накрест лежащие углы) ;
MO =OK (по условию) .
Из равенства этих треугольников следует, что MB = KA, но они и параллельны
MB | | KA (лежат на параллельных прямых MF и NK) .
Значит MAKB параллелограмма по второму признаку(если противоположные стороны четырехугольника равны и параллельны то четырехугольник параллелограмма) .