дан равнобедренный треугольник ABC с основанием AC точка E лежит на стороне AB причем BE =BC-AC точка K середина отрезка CE докажите что угол AKB тупой
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
тогда углы при основании <Вп=(180-120) /2 = 30
углы при основании являются вписанными <Вп - опираются на хорды ( боковая сторона)
на эту же хорду/сторону опирается центральный угол <Цн
центральный угол в 2 раза больше вписанного <Цн =2* <Вп = 2*30=60 град
из центра описанной окружности боковые стороны видны под углом 60 град
основание видно под углом 2*<Цн =2*60=120 град
2.Треугольник АВС,
уголА=36,
уголС=48,
уголВ=180-36-48=96,
центр вписанной окружности О лежит на пересечении биссекрис, треугольник АОС,
уголАОС=180-1/2уголА-1/2уголС=180-18-24=138 - видна сторона АС, треугольник АОВ,
уголАОВ=180-1/2уголА-1/2уголВ=180-18-48=114-видна сторона АВ,
треугольник ВОС, уголВОС=180-1/2уголС-1/2уголВ=180-24-48=108 - видна стгорона ВС
3.четырехугольник АВСД вписан в окружность, уголА/уголВ/уголС=3/4/6=3х/4х/6х,
около четырехугольника можно описать окружность при условии что сумма противоположных углов=180,
уголА+уголС=180=уголВ+уголД, 3х+6х=4х+уголД, уголД=9х-4х=5х, 3х+6х=180, х=20, уголА=3*20=60, уголВ=4*20=80, уголС=6*20=120, уголД=5*20=100
4.AB+DC=AD+BC P=48 48:2=24 AB+DC=24 AD+BC=24 x+4 - AB x - CD x+x+4=24 x=10 14=AB 10=CD 1y - BC 2y - AD 1y+2y=24 y=8 8=BC 16=AD
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .