Дан равнобедренный треугольник MВN с основанием MN и высотой BO. На лучах ВM и ВN вне треугольника MВN отложены равные отрезки МA и NC. Луч BO пересекает отрезок AC в точке D. Доказать, что ВD – высота треугольника ABC.
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
Любое пересечение сферы - это окружность.
Находим расстояние от центра сферы до плоскости.
Для вычисления расстояния от точки M(Mx; My; Mz) до плоскости Ax + By + Cz + D = 0 используем формулу:
d = |A·Mx + B·My + C·Mz + D| √A2 + B2 + C2
Подставим в формулу данные:
Координаты центра сферы (это точка М) получаем из уравнения сферы: М(0; -1; 2). Уравнение плоскости в общем виде: у + z - 2 = 0.
Коэффициенты равны: А = 0, В = 1, С = 1, Д = -2.
d = |0·0 + 1·(-1) + 1·2 + (-2)| /√(0² + 1² + 1²) = |0 - 1 + 2 - 2| √(0 + 1 + 1) =
= 1 /√2 = √2/ 2 ≈ 0.7071067.
Отсюда находим радиус окружности, по которой пересекается сфера.
r = √(R² - d²) = √(5² - (1/√2)²) = √(25 - (1/2)) = √(49/2) = 7/√2 = 7√2/2.
ответ: L = 2πr = 2π*(7√2/2) = 7√2π.