Сумма углов в треугольнике равна 180 градусов. Зная градусные меры двух углов, мы можем найти третий угол: 180-90-60=30 (градусов) - угол В
У нас прямоугольный треугольник. Заметим, что угол В=30 градусов, по теореме, на против угла в 30 градусов лежит сторона равная половине гипотенузы, т.е. катет АС=1\2 АВ = 0.5*8=4 Чтобы найти неизвестный катет воспользуемся т.Пифагора. по т. Пифагора:ВС= \sqrt{ AB^{2} - AC^{2} }= \sqrt{ 8^{2} - 4^{2} }= \sqrt{64-16} = \sqrt{48} [/tex] ОТВЕТ : корень квадратный из 48
Пусть х = боковая сторона. Тогда х+15 = основание. Проводим высоту и имеем два прямоугольных треугольника. решим один из них по теореме пифагора. Очевидно, что катеты равны 15 и (х+15):2, поэтому уравнение пифагора имеет вид х2 = 225+ (х2+30х+225):4 (х2 = это икс в квадрате)
То есть 4х2= 900 + х2+30х+225, переносим все в одну сторону и тогда 3х2-30х-1125 =0, или же х2-10 х - 375 = 0. Дискриминант равен 40 (посчитать по формуле),
х = (10-40):2 нам не годится, а вот х = (10+40): 2 = 25 канает. Это была сторона равноб. треуг. А основание его = 25+15 = 40.
Зная градусные меры двух углов, мы можем найти третий угол: 180-90-60=30 (градусов) - угол В
У нас прямоугольный треугольник. Заметим, что угол В=30 градусов, по теореме, на против угла в 30 градусов лежит сторона равная половине гипотенузы, т.е. катет АС=1\2 АВ = 0.5*8=4
Чтобы найти неизвестный катет воспользуемся т.Пифагора.
по т. Пифагора:ВС= \sqrt{ AB^{2} - AC^{2} }= \sqrt{ 8^{2} - 4^{2} }= \sqrt{64-16} = \sqrt{48} [/tex]
ОТВЕТ : корень квадратный из 48
Пусть х = боковая сторона. Тогда х+15 = основание. Проводим высоту и имеем два прямоугольных треугольника.
решим один из них по теореме пифагора. Очевидно, что катеты равны 15 и (х+15):2, поэтому уравнение пифагора имеет вид х2 = 225+ (х2+30х+225):4
(х2 = это икс в квадрате)
То есть 4х2= 900 + х2+30х+225, переносим все в одну сторону и тогда 3х2-30х-1125 =0, или же х2-10 х - 375 = 0. Дискриминант равен 40 (посчитать по формуле),
х = (10-40):2 нам не годится, а вот х = (10+40): 2 = 25 канает. Это была сторона равноб. треуг. А основание его = 25+15 = 40.