В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
anuta00002000
anuta00002000
28.05.2022 06:52 •  Геометрия

Дан равносторонний треугольник. Вычисли неизвестные величины, если BO= 6 м. r — радиус вписанной окружности;​


Дан равносторонний треугольник. Вычисли неизвестные величины, если BO= 6 м. r — радиус вписанной окр

Показать ответ
Ответ:
boda13
boda13
27.01.2024 08:31
Давайте разберем этот вопрос пошагово.

1. Из условия задачи, нам дано, что треугольник ABC является равносторонним.

2. Так как треугольник равносторонний, то у него все стороны равны между собой. Обозначим длину каждой стороны треугольника как "a".

3. Зная, что BO = 6 метров, мы знаем, что это радиус вписанной окружности треугольника. Вспомним свойство равностороннего треугольника: радиус вписанной окружности проходит через центр треугольника и делит его на три равные дуги.

4. Таким образом, радиус вписанной окружности BO является высотой треугольника, которая делит его на две равные половины.

5. Найдем высоту треугольника, используя теорему Пифагора. Построим прямую от вершины C, проходящую через середину стороны AB. Обозначим эту точку как M. Также обозначим высоту треугольника как h.

6. Так как треугольник равносторонний, то сторона AB равна длине a. Используя свойства равностороннего треугольника, мы можем найти длину стороны AM, которая равна a/2.

7. Из треугольника AMC можно найти длину AM, используя теорему Пифагора: AM^2 + CM^2 = AC^2. Так как треугольник равносторонний, то AC равно a, а CM - это радиус вписанной окружности BO, то есть 6 метров. Получаем AM^2 + 6^2 = a^2.

8. У нас есть еще одна пара равных сторон треугольника - AC и BC. Из равенства длин сторон AC и BC можем найти длину связанных отрезков - AM и BM (где BM это половина стороны треугольника). Получаем AM = BM.

9. Таким образом, можем записать уравнение вида AM + BM = a. Подставим полученное значение AM: AM + AM = a, а это равно BM + BM = a. Получаем 2AM = BM. Значит AM = BM = a/2.

10. Вернемся к уравнению AM^2 + 6^2 = a^2. Подставим значение AM: (a/2)^2 + 6^2 = a^2. Раскроем скобки: a^2/4 + 36 = a^2. Умножим обе части уравнения на 4: a^2 + 144 = 4a^2. Выразим a^2: 3a^2 = 144. Разделим обе части уравнения на 3: a^2 = 48. Извлечем квадратный корень из обеих частей уравнения: a = √48.

11. Таким образом, длина каждой стороны треугольника a равна √48.

12. Чтобы найти радиус вписанной окружности r, воспользуемся формулой для радиуса вписанной окружности равностороннего треугольника: r = (√3 / 6) * a.

13. Подставим значение a: r = (√3 / 6) * √48.

14. Упростим выражение: r = (√3 / 6) * √16 * √3 = (√3 / 6) * 4√3 = 2√3.

Таким образом, длина каждой стороны треугольника a равна √48 метров, а радиус вписанной окружности r равен 2√3 метров.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота