Пусть имеем ромб ABCD, т. О - точка пересечения диагоналей
Найдем сторону ромба
AO=OC=6/2=3
DO=OB=8/2=4
(AB)^2=(AO)^2+(OB)^2
(AB)^2=3^2+4^2=9+16=25
AO=sqrt(25)=5- сторона ромба
Площадь ромба равна
S=d1*d2/2=6*8/2=24
С другой стороны площадь ромба равна
S=a*h => h=S/a=24/5=4,8
Пусть имеем ромб ABCD, т. О - точка пересечения диагоналей
Найдем сторону ромба
AO=OC=6/2=3
DO=OB=8/2=4
(AB)^2=(AO)^2+(OB)^2
(AB)^2=3^2+4^2=9+16=25
AO=sqrt(25)=5- сторона ромба
Площадь ромба равна
S=d1*d2/2=6*8/2=24
С другой стороны площадь ромба равна
S=a*h => h=S/a=24/5=4,8
По теореме Пифагора a=корень((d1/2)^2+(d2/2)^2)
Cовмещая, получаем r=d1*d2 / (4*корень((d1/2)^2+(d2/2)^2))
Подставляя заданные значения. получаем r=6*8 / (4*корень((6/2)^2+(8/2)^2)) = 2,4