Дан шар с центром в точке О и два круга с площадями 12 и 16, образованные сечениями шара параллельными плоскостями. Точка О является центром большего из кругов, на окружности меньшего из кругов взяли точку А. Найдите угол между прямой О А и плоскостью, содержащей больший круг.
2x - 6 - 2x(x² + 2x - 2x - 4) = 2x - x² - 6 + 3x ;
2x - 6 - 2x(x² - 4) = - x² + 5x - 6 ;
2x - 6 - 2x³ + 8x = - x² +5x - 6 ;
2x - 2x³ + 8x + x² - 5x = - 6 +6 ;
- 2x³ + x² + 5x = 0 | *(-1) ;
2x³ - x² - 5x = 0 ;
x(2x² - x - 5) = 0;
x₁ = 0 или 2x² - x - 5 = 0
D = b² - 4ac = (-1)² - 4*2*(-5) = 1 + 40 = 41
x₂ = (-b + √D) / 2*a = (1 + √41) / 4 <==>
x₃ = (-b - √D) / 2*a = (1 - √41) / 4 <==>
ответ: x₁ = 0
x₂ =
x₃ =
Внешним углом треугольника называется угол смежный с каким-либо углом этого треугольника.
Смотри приложение :
Дан ΔАВС .
При вершине С начертим внешний угол , обозначим его ∠ВСD.
Теорема : Внешний угол треугольника равен сумме двух углов не смежных с ним.
Дано : ΔАВС
Внутренние углы треугольника: ∠ВАС , ∠АВС , ∠ВСА
Внешний угол при вершине С: ∠ВСD
Доказать : ∠ВСD = ∠ВАС + ∠АВС
Доказательство.
1) По теореме о сумме углов треугольника :
Сумма углов (внутренних) треугольника равна 180 градусов.
∠ВАС + ∠АВС + ∠ВСА = 180°
∠ВАС + ∠АВС = 180° - ∠ ВСА
2) По свойству смежных углов:
Сумма смежных углов равна 180 градусов.
∠ВСD + ∠ BCA = 180°
∠ВСD = 180° - ∠BCA
3) ∠ВСD = ∠BAC + ∠АВС = 180° - ∠ВСА
∠ВСD = ∠BAC + ∠ABC , что и требовалось доказать...