Дан тетраэдр DABC. Точка M середина ребра AD. построить сечение тетраэдра плоскостью, проходящей через т.М и параллельно грани АВС. найти периметр сечения, если ребро тетраэдра равно а
Нехай прямі АВ та СМ перетинаються в т.О. Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою. Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою. Нехай ∠СОВ+∠ВОМ+∠АОМ=286°. Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної. Сума суміжних кутів дорівнює 180°. ∠СОВ+∠ВОМ=180°, бо вони суміжні. ∠АОМ+∠АОС=180°, бо вони суміжні. Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°: ∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180° ∠СОВ+∠ВОМ+∠АОМ+∠АОС=360° Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить 286°+∠АОС = 360° ∠АОС=360-286 ∠АОС=74°. Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то ∠СОВ+74°=180° ∠СОВ=180°-74° ∠СОВ=106°. Виходить, що ∠СОВ=∠АОМ=106°.
Можно так. 1) Середина диагонали АС прямоугольника является точкой пересечения диагоналей, а также центром симметриии прямоугольника. Значит точка О делит отрезок РК пополам, тогда в ΔСОР =ΔАОК по двум сторонам и углу между ними (ОР=ОК, АО=ОС и углы РОС и АОК равны как вертикальные). Отсюда РС=АК, а также РСIIАК, Значит АРСК параллелогамм. 2) S(АРСК)=РС*CD, CD=√(AC²-AD²)=√(169-144)=5, PC=AK=4, S(АРСК)=4*5=20. 3) Проведем РМ II CD, РМ=5, КМ=8-4=4, РК=√(РМ²+КМ²)=√(25+16)=√41, 4) По теореме косинусов АК²=АО²+ОК²-2АО*ОК*cos(AOK). АК=4, АО=6,5, ОК=√41/2.
Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою.
Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою.
Нехай ∠СОВ+∠ВОМ+∠АОМ=286°.
Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної.
Сума суміжних кутів дорівнює 180°.
∠СОВ+∠ВОМ=180°, бо вони суміжні.
∠АОМ+∠АОС=180°, бо вони суміжні.
Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°:
∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180°
∠СОВ+∠ВОМ+∠АОМ+∠АОС=360°
Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить
286°+∠АОС = 360°
∠АОС=360-286
∠АОС=74°.
Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то
∠СОВ+74°=180°
∠СОВ=180°-74°
∠СОВ=106°.
Виходить, що ∠СОВ=∠АОМ=106°.
Відповідь: два кути по 74° та два кути по 106°.
1) Середина диагонали АС прямоугольника является точкой пересечения диагоналей, а также центром симметриии прямоугольника. Значит точка О делит отрезок РК пополам, тогда в ΔСОР =ΔАОК по двум сторонам и углу между ними (ОР=ОК, АО=ОС и углы РОС и АОК равны как вертикальные). Отсюда РС=АК, а также РСIIАК, Значит АРСК параллелогамм.
2) S(АРСК)=РС*CD, CD=√(AC²-AD²)=√(169-144)=5, PC=AK=4, S(АРСК)=4*5=20.
3) Проведем РМ II CD, РМ=5, КМ=8-4=4, РК=√(РМ²+КМ²)=√(25+16)=√41,
4) По теореме косинусов АК²=АО²+ОК²-2АО*ОК*cos(AOK).
АК=4, АО=6,5, ОК=√41/2.