Параллелограмм – четырехугольник, у которого каждые две противоположные стороны параллельны Первый признак параллелограмма. Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник – параллелограмм Второй признак параллелограмма. Если в четырехугольнике каждые две противоположные стороны равны, то этот четырехугольник – параллелограмм Третий признак параллелограмма. Если в четырёхугольнике диагонали в точке пересечения делятся пополам, то данный четырёхугольник является параллелограммом. Трапеция – это четырёхугольник, у которого две стороны параллельны, а две другие – нет. Средняя линия трапеции – отрезок, соединяющий середины боковых сторон. Средняя линия трапеции равна полусумме оснований трапеции. Прямоугольником называют параллелограмм, у которого все углы прямые Свойство прямоугольника. Диагонали прямоугольника равны. Признак прямоугольника. Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.
Ромб – это параллелограмм, у которого все стороны равны. Квадрат – это прямоугольник, у которого все стороны равны. ВСЕ ПЛОЩАДИ ФИГУР(многоугольник, прямоугольник,квадрат, параллелограмм, треугольник, трапеция) Теорема пифагора - в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Разобрать формулу Герона(редко, но нужна) Подобие фигур - Подобными называются такие треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника Первый признак подобия треугольгольников - Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. Второй признак - Если две стороны одного треугольника пропорциональны двум другим сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны. Третий признак - Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Имеем равнобедренный треугольник АВС, АВ = ВС. Точка Н - середина АВ. Перпендикуляр к АВ в точке Н - отрезок ДН. Площадь АВС = 144, площадь АНД = 50, угол ВАС = углу ВСА. Основание высоты из вершины В - точка Е.
Так как АН = НВ, НД ⊥ АВ, то треугольник АВД -равнобедренный. Угол ВАД = углу АВД. Отсюда делаем вывод, что треугольники ВДА и АВС подобны по двум углам. Площадь треугольника ВДА = 2*50 = 100. Площади подобных треугольников относятся как квадрат коэффициента "к" подобия. к = √(144/100) = √1,44 = 1,2. Рассмотрим половины подобных треугольников - прямоугольные треугольники ВДН и АВЕ. В треугольнике ВДН примем ВН = х, ДН = у, так как АВ = 2х, то ВД = (2х/1,2). В треугольнике АВЕ катет АЕ = 1,2х, катет ВЕ = 1,2у, гипотенуза АВ = 2х. Из него по Пифагору определяем: ВЕ² = (2х)² - (1,2х)² = 4х² - 1,44х² =2,56х². Тогда ВЕ = 1,2у = 1,6х. Площадь АВЕ = 144/2 = 72. Получаем 72 = (1/2)*АЕ*ВЕ = (1/2)*1,2х*1,6х = 0,96х². х² = 72/0,96 = 75. х = √75 = 5√3.
ответ: боковые стороны равны по 2х = 2*5√3 = 10√3 кв.ед.
Первый признак параллелограмма. Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник – параллелограмм
Второй признак параллелограмма. Если в четырехугольнике каждые две противоположные стороны равны, то этот четырехугольник – параллелограмм
Третий признак параллелограмма. Если в четырёхугольнике диагонали в точке пересечения делятся пополам, то данный четырёхугольник является параллелограммом.
Трапеция – это четырёхугольник, у которого две стороны параллельны, а две другие – нет.
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Средняя линия трапеции равна полусумме оснований трапеции.
Прямоугольником называют параллелограмм, у которого все углы прямые
Свойство прямоугольника. Диагонали прямоугольника равны.
Признак прямоугольника. Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.
Ромб – это параллелограмм, у которого все стороны равны.
Квадрат – это прямоугольник, у которого все стороны равны.
ВСЕ ПЛОЩАДИ ФИГУР(многоугольник, прямоугольник,квадрат, параллелограмм, треугольник, трапеция)
Теорема пифагора - в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Разобрать формулу Герона(редко, но нужна)
Подобие фигур - Подобными называются такие треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника
Первый признак подобия треугольгольников - Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Второй признак - Если две стороны одного треугольника пропорциональны двум другим сторонам другого треугольника, а углы, заключённые между этими сторонами, равны, то такие треугольники подобны.
Третий признак - Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Так как АН = НВ, НД ⊥ АВ, то треугольник АВД -равнобедренный. Угол ВАД = углу АВД.
Отсюда делаем вывод, что треугольники ВДА и АВС подобны по двум углам.
Площадь треугольника ВДА = 2*50 = 100.
Площади подобных треугольников относятся как квадрат коэффициента "к" подобия.
к = √(144/100) = √1,44 = 1,2.
Рассмотрим половины подобных треугольников - прямоугольные треугольники ВДН и АВЕ.
В треугольнике ВДН примем ВН = х, ДН = у, так как АВ = 2х, то ВД = (2х/1,2).
В треугольнике АВЕ катет АЕ = 1,2х, катет ВЕ = 1,2у, гипотенуза АВ = 2х.
Из него по Пифагору определяем:
ВЕ² = (2х)² - (1,2х)² = 4х² - 1,44х² =2,56х².
Тогда ВЕ = 1,2у = 1,6х.
Площадь АВЕ = 144/2 = 72.
Получаем 72 = (1/2)*АЕ*ВЕ = (1/2)*1,2х*1,6х = 0,96х².
х² = 72/0,96 = 75.
х = √75 = 5√3.
ответ: боковые стороны равны по 2х = 2*5√3 = 10√3 кв.ед.