В треугольнике со сторонами 25 см, 25 см, 14 см найдите расстояние от точки пересечения медиан до вершин треугольника.
ответ или решение 1
Стрелкова Полина
Для решения рассмотрим рисунок
Так как, по условию, АВ = ВС = 25 см, то треугольник АВС равнобедренный, а медиана ВН так же есть высота треугольника.
Медиана ВН делит основание АС пополам, тогда АН = СН = АС / 2 = 14 / 2 = 7 см.
В прямоугольном треугольнике АВН определим длину катета ВН.
ВН2 = АВ2 – АН2 = 625 – 49 = 576.
ВН = 24 см.
Медианы треугольника, в точке их пересечения, делятся в отношении 2 / 1, начиная с вершины.
Тогда ВО = 2 * ОН.
ВН = 24 = ОН + 2 * ОН = 3 * ОН.
ОН = 24 / 3 = 8 см.
ВО = 24 – 8 = 16 см.
В прямоугольном треугольнике АОН, АО2 = ОН2 + АН2 = 64 + 49 = 113.
АО = СО = √113 см.
ответ: Расстояние от точки пересечения медиан до вершин треугольника равно 8 см и √113 см.
Объяснение:
1. S= - формулу площади квадрата.
a - сторона
a=14
P=14*4 = 56 см
S= 14:2=196 см^2
2. S = 1/2* a*h формулу площади треугольника
a - сторона основания
h - высота
а=10 см
h = 6 см
S= 1/2*10*6 = 30 см ^2
3. S =a*h формулу площади параллелограмма
a - основание
а=16
h = 5
S = 16*5 = 80 см ^2
4. S =a*b формулу площади прямоугольника
a - длина
b - ширина
a =8 b =7
S = 8*7 = 56 см ^2
5. S = 1/2( a+b)*h формулу площади трапеции
b - основание
a =13
b =5
h = 8
S = 1/2( 13+5)*8 = 72 см ^2
6. S = 1/2* d1*d2 формулу площади ромба
d1 и d2 - диагонали ромба
d1= 14
d2 = 8
S = 1/2* 14*8 = 56 см ^2
7. S = 1/2* a*b формулу площади прямоугольного треугольника
a и b - катеты
a= 6 см
b= 9
S = 1/2* 6*9 = 27 см ^2
В треугольнике со сторонами 25 см, 25 см, 14 см найдите расстояние от точки пересечения медиан до вершин треугольника.
ответ или решение 1
Стрелкова Полина
Для решения рассмотрим рисунок
Так как, по условию, АВ = ВС = 25 см, то треугольник АВС равнобедренный, а медиана ВН так же есть высота треугольника.
Медиана ВН делит основание АС пополам, тогда АН = СН = АС / 2 = 14 / 2 = 7 см.
В прямоугольном треугольнике АВН определим длину катета ВН.
ВН2 = АВ2 – АН2 = 625 – 49 = 576.
ВН = 24 см.
Медианы треугольника, в точке их пересечения, делятся в отношении 2 / 1, начиная с вершины.
Тогда ВО = 2 * ОН.
ВН = 24 = ОН + 2 * ОН = 3 * ОН.
ОН = 24 / 3 = 8 см.
ВО = 24 – 8 = 16 см.
В прямоугольном треугольнике АОН, АО2 = ОН2 + АН2 = 64 + 49 = 113.
АО = СО = √113 см.
ответ: Расстояние от точки пересечения медиан до вершин треугольника равно 8 см и √113 см.
Объяснение:
1. S= - формулу площади квадрата.
a - сторона
a=14
P=14*4 = 56 см
S= 14:2=196 см^2
2. S = 1/2* a*h формулу площади треугольника
a - сторона основания
h - высота
а=10 см
h = 6 см
S= 1/2*10*6 = 30 см ^2
3. S =a*h формулу площади параллелограмма
a - основание
h - высота
а=16
h = 5
S = 16*5 = 80 см ^2
4. S =a*b формулу площади прямоугольника
a - длина
b - ширина
a =8 b =7
S = 8*7 = 56 см ^2
5. S = 1/2( a+b)*h формулу площади трапеции
a - основание
b - основание
h - высота
a =13
b =5
h = 8
S = 1/2( 13+5)*8 = 72 см ^2
6. S = 1/2* d1*d2 формулу площади ромба
d1 и d2 - диагонали ромба
d1= 14
d2 = 8
S = 1/2* 14*8 = 56 см ^2
7. S = 1/2* a*b формулу площади прямоугольного треугольника
a и b - катеты
a= 6 см
b= 9
S = 1/2* 6*9 = 27 см ^2