В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Если в равнобедренной трапеции АВСД диагонали пересекаются под прямым углом, то угол между диагональю и основанием равен 45 градусов. Обозначим боковую сторону за х. Опустим из вершины С верхнего основания трапеции перпендикуляр на нижнее основание, тогда проекция диагонали на основание равно 10 см. Перенесём верхнее основание "в" в точку Д. Получим равнобедренный треугольник с основанием, равным а + в, а так как боковые стороны - это диагонали, то сумма их проекций равна 20 см. То есть а + в = 20 см. Тогда 2х = 48-20 = 28 см, а х = 28/2 = 14 см.
Являются доказанными такие свойства равнобедренного треугольника:
- равенство углов при основании,
- совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника,
- равенство между собой двух других биссектрис (медиан, высот),
- пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии.
Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.
Обозначим боковую сторону за х.
Опустим из вершины С верхнего основания трапеции перпендикуляр на нижнее основание, тогда проекция диагонали на основание равно 10 см.
Перенесём верхнее основание "в" в точку Д.
Получим равнобедренный треугольник с основанием, равным а + в, а так как боковые стороны - это диагонали, то сумма их проекций равна 20 см.
То есть а + в = 20 см.
Тогда 2х = 48-20 = 28 см, а х = 28/2 = 14 см.